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Résumé

Dans ce travail, nous étudions comment apprendre des représentations des données qui ont

certaines structures dans le but d’améliorer la généralisation, ainsi que de nous intéresser à

l’utilisation de ces représentations structurées dans le cadre d’applications.

Dans le premier projet présenté dans ce document, nous proposons une méthode pour

apprendre une représentation qui capture la sémantique partagée par les données provenant

de différents domaines. Nous utilisons alors cette représentation dans le contexte de transfert

de domaines des images sans supervision dans le but d’informer le modèle de la sémantique

étant transférée ainsi que de contraindre l’apprentissage à préserver cette sémantique. Cette

méthode permet un transfert d’attributs de sémantique à plus haut niveau comme les caté-

gories d’objets.

Dans le second projet, nous proposons un module que nous plaçons dans les modèles

d’apprentissage à auto-supervision dans le but d’induire une discrétisation douce. Nous

démontrons que ce module améliore la généralisation systématique ainsi que la généralisation

à des domaines différents que celui d’entraînement.

Mot clés: Apprentissage de representation non supervisé, généralisation.
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Abstract

In this work, we are concerned with learning representation with specific structures to im-

prove generalization and how to leverage these representations in the context of applications.

In the first project, we propose a method to learn a representation that captures the

shared semantics of samples across different domains. We then leverage this representation

in the context of Unsupervised Domain Translation to inform the model on the semantics

being transferred and to constrain the learning procedure to preserve said semantics. This

method allows translation between higher-order semantic attributes such as object categories.

The second project proposes a drop-in module to induce soft-discretization in self-

supervised learning. We demonstrate increased systematic out-of-distribution generalization

and domain generalization performance.

Keywords. Representation learning, Unsupervised learning, Out-of-distribution gener-

alization.
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Introduction

Despite deep learning showing increasingly impressive applications, there is not a consensus

as to why it currently works as well as it does. Some skeptical actors claim that all deep

learning does is "curve fitting." While there is truth in this claim, we will entertain the idea

that this curve fitting process can lead to useful emergent properties such as structure in

the organization of the parameters of the model as well as structure representing observable

attributes of the sample in the hidden representation of the network.

We define the emergence of a property P from a system S with dynamics D, in the weak

sense of the word, as follows [Bedau, 1997]: "A [property] P of a system S with microdynamics

D is emergent if and only if P can be derived from D and S’s external condition but only

by simulation". We illustrate this concept with two examples:

Example 1. Conway’s Game of Life. Conway’s Game of Life [Gardner, 1970] is a grid-

world game where each cell evolves according to the state of its neighbours. Depending on

the initial conditions of the system – which are set by an external agent, and the rules 1 that

defines the dynamics – different shapes and behaviours that can emerge. For example, we

see that a periodic system emerges in Figure 1b.

�

1The production rules are defined as follows [Gardner, 1970]: 1- any live cell with two or three live neighbours
survives. 2- Any dead cell with three live neighbours becomes a live cell. 3- All other live cells die in the
next generation.



(a) (b) (c)

Fig. 1. (a) Conway’s game of life. The system converge to a static loop after 4 steps (b)
Conway’s game of life. Given a slightly different set of initial, a periodic cycle emerges
after 10 steps. (c) Curve detectors [Olah et al., 2020] An edge detector emerges in the
parameters of the kernel of a convolution (red are positive weights and blue are negative
weights) in the second layer of a VGG network after the training on ImageNet.

This example demonstrates that emergent properties can arise in a simple setup. The

following example is related to a property that we observe in deep learning when training

convolutional neural networks on vision tasks.

Example 2. Curve detector in a convolutional neural network. The training of

a neural network is a system with dynamics governed by the optimization procedure. The

optimization procedure is typically a greedy algorithm, notably Stochastic Gradient Descent,

that aims at finding the parameters θ of a function f that minimizes a specific objective

function L. More precisely, the dynamics of the parameters of a neural network fθ is governed

by the following update rule:

θ ← θ − α∇θL(fθ,X , ·).

The external conditions include the definition of the objective function L, the training X ,

the initialization scheme of θ, the learning rate α and other conditions such as the data

augmentation and other hyperparameters that we denote with the dot (·).
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Given the right set of conditions, we can observe different useful functions emerge. Ex-

amples include a dog detector if a convolutional neural network [LeCun et al.] 2 is trained on

a dataset with images of dogs, or more generally an edge detector as depicted in Figure 1c.

�

The word "structure" will be used throughout this document qualitatively to describe

interesting organization of data or parameters. For example, embeddings where natural im-

ages are clustered according to their label – allowing a linear classifier onto – have structure.

The organization of parameters into a curve detector in a convolution kernel has structure,

and the composition of such kernels to generate a dog detector also has structure. While

there are efforts into bringing a more grounded notion of structure to machine learning using

ideas from geometry [Bronstein et al., 2021], abstract algebra [de Haan et al., 2020] and

topological data analysis [Carlsson and Gabrielsson, 2018], the formal treatment of the word

structure is out of the scope of this document. Nonetheless, we still use this word since it

captures the essence of the meaning that we want to convey.

This document will initially discuss current methods proposed in the deep learning lit-

erature for encouraging the emergence of structure. Notably, we will discuss different archi-

tectural and objective functions and the properties that they lead to. In the same chapter,

we will discuss how the community studying artificial language emergence has approached

the question of the emergence of structure in language. This discussion will only be used in

chapter 3, where we will discuss our ongoing work and potential future works. In chapter 2,

we will tackle the problem of preserving semantics in Unsupervised Domain Translation. We

2A convolutional neural network is a function defined mostly by a composition of convolutions. The compo-
sition of convolutions is often intertwined with element-wise non-linearity such as ReLU Agarap [2019]
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will approach the problem by first proposing a method for learning a categorical representa-

tion of the shared semantics between two domains. This representation will be leveraged in

Unsupervised Domain Translation frameworks to penalize the network for not preserving the

learned semantics. Finally, in chapter 3, we will explore how to improve systematic general-

ization and domain generalization using ideas from the language emergence community. We

will present a current work where we attempt to impose structure in self-supervised learning

models by imposing a soft discretization bottleneck. Finally, we conclude with some ideas

that we think are promising for further improving generalization in self-supervised learning,

including the idea of using Iterated Learning and a direction for semantics identification for

self-supervised learning.
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Chapter 1

Structure in representation learning and

artificial language

1.1. Representation learning

Representation learning is the cornerstone of deep learning. Whether we learn a model

end-to-end or learn a representation that will subsequently be for a downstream application,

we always aim to learn a representation that will have useful properties for our desired task.

For example, take the classification task, where the objective is to minimize the error be-

tween the predicted label from a model and a label given by a human. As demonstrated

by Huh et al. [2016], Yosinski et al. [2015], Zhou et al. [2015], Bau et al. [2017], Simonyan

et al. [2014], in applying convolutional neural networks to computer vision, special-purpose

modules tailored for detecting categories in the image emerge in the parameters of the net-

work. Furthermore, Carbonnelle and Vleeschouwer [2020] observed that the images cluster

according to the labelled categories in the hidden representations of a trained network,

demonstrating emergent structure in the embedding of the samples themselves. While it is

useful that the representation develops such a structure, other less desirable solutions are



possible. For example, the samples could be represented by some idiosyncratic coordinates.

In other words, it could memorize a dictionary of the sample and its category since this

function minimizes the training error and deep networks are universal function approxima-

tors [Hornik et al., 1989]. Zhang et al. [2017] demonstrated that such as solution is possible

in practice by fitting a neural network to random labels. While we would expect a classifier

to classify the training samples, it would be surprising that it generalizes to samples outside

of the training set. Thus we can say that this representation is not useful due to its lack of

structure.

In practice, we observe that structure may arise given the correct pressures. The emer-

gence of structural properties is governed by the microdynamics of a system and its external

condition. Researchers and practitioners have been inducing structure by using clever ob-

jectives and architectures. However, it has recently been demonstrated that increasing the

scale of data can lead to an improvement in generalization and few-shot learning capabili-

ties [Brown et al., 2020].

In this document, we will study how imposing the right set of objectives can lead to

semantic preserving Unsupervised Domain Translation in chapter 2. Furthermore, we will

demonstrate that a drop-in architectural module that imposes a soft-discretization improves

systematic generalization and robustness to domain shift in chapter 3. We will now review

some objectives and architectural choices relevant to the works presented in the sequel.

1.1.1. Architecture – Convolutional Neural Networks

The main idea of a Convolutional Neural Networks (CNN) [LeCun et al.] is to use a

convolution operator in place of matrix multiplication in at least one layer of a neural net-

work. Since we are primarily concerned with computer vision application in this document,
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we define the convolutional operation (more precisely the cross-correlation operation) for

2D-grids as follows:

s(i, j; I,K) =
M∑
m=0

N∑
n=0

I(i+m, j + n)K(m,n), (1.1.1)

where I is the image and K is the kernel applied on I with width M and height N . We

notice that forM and N smaller than the width and the height of I respectively, the number

of parameters of a convolution operator is smaller than the number of parameters for matrix

multiplications. The number of parameters is constant with respect to the input size for the

convolution, whereas the number of parameters scales quadratically with the input size for

a fully connected layer. The convolution reduces the complexity of the network, not only

because it has fewer parameters than its fully connected counterpart but also because it can

be represented by a doubly block circulant matrix and is thus strictly a subset of the possible

fully connected matrices, reducing the number of possible solutions. Using convolutions

instead of fully connected layers improves generalization in vision tasks, demonstrating that

such compression is a good inductive bias for these tasks.

Relatedly, residual connections [He et al., 2015] are often used in conjunction with con-

volution neural networks. Defined as follows

z′ := F(z) + z, (1.1.2)

the residual connection can be summarized as adding a shortcut connection to a composition

of layers F (for example, the composition of convolutions and non-linear activations). While

the initial motivation was to improve the optimization of deep networks, this procedure

is at the base of a lot of the Unsupervised Domain Translation architectures [Zhu et al.,

2017b, Choi et al., 2017, 2019, Taigman et al., 2017]. Without such architectural biases,
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those methods would most likely select a solution that does not preserve the structure of the

source samples, as many solutions that minimize their objectives exist [de Bézenac et al.,

2019] and could be selected. Furthermore, as demonstrated in chapter 2, the learned mapping

does not preserve the semantics when the target images are not merely a different texture

or colour than the source images.

1.1.2. Objectives

We are using this subsection to introduce several ideas that will be used in the subsequent

chapters. Background on self-supervised learning objective, including contrastive learning

objectives and BYOL, will be useful for both chapter 2 and chapter 3. Background on

clustering and domain adaptation will be useful for chapter 2.

Contrastive learning. In contrastive learning, a bounded metric space is defined in which

the aim is to both minimize the distance between the representation of a sample zi =

fθ(xi) : x ∈ X and the representation of a positive sample zj = fθ(xj), and to maximize

the distance between zi and the representation of negative samples fθ(x′) : x′ ∈ X \ xi.

While the positive samples are typically augmented samples of xi, other strategies can be

decided, such as choosing samples from the same labelled category [Khosla et al., 2021].

Noise contrastive estimation has been used by several methods [Chen et al., 2020b, He et al.,

2020, Chen et al., 2020c, Hjelm et al., 2019a] and is defined as follows:

Lnce := − log exp(d(zi, zj)/τ)∑
x̄∈X\x exp(d(zi, z̄)/τ) , (1.1.3)

where d is often taken to be the cosine similarity: d(x,y) := x>y/||x||||y||.

BYOL.. Unlike most contrastive methods, BYOL [Grill et al., 2020] does not require neg-

ative samples. Instead, it introduces a target network in which the parameters ξ is a

28



moving average of θ. They define the anchor and positive samples as zθ = fθ(t(x)) and

zξ = fξ(t′((x)) respectively, where t,t′ ∼ T are augmentations sampled from a set of possible

augmentations defined by the practitioner. Important to their method is a re-normalization

of the representation using, for example, batch normalization [Ioffe and Szegedy, 2015], that

acts as a repulsion force that prevents collapse and a stop-gradient operation on zξ that

prevents the gradient from back-propagating through the target network. They also and

introduce a prediction head and maps zθ 7→ qθ. The objective to minimize is defined as

follows:

Lbyol := 2− d(qθ, zξ), (1.1.4)

where d is explicitely defined as the cosine similarity.

The representation is typically evaluated on its ability to fit a linear classifier or

cluster the samples on the learned representation. While no direct supervision is necessary

during the training of the representation, the performance of the models trained with

self-supervision is comparable to that obtained when training a classifier end-to-end

with supervision. For example, for a comparable model, fitting a linear classifier on the

representation learned with BYOL yields a score of 78.6% accuracy on ImageNet, while the

supervised counterpart obtains a score of 78.9% [Grill et al., 2020]. The remarkable ability

to fit a linear classifier on top of a representation of a model trained with self-supervision

indicates that the representation has some structure for the data taken from the same

training set distribution. However, as demonstrated in Figure 1, taken from Djolonga et al.

[2021], the models trained with SimCLR are less robust to transfer learning than the models

trained with supervision.
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Fig. 1. Taken from Djolonga et al. [2021]. Demonstrate the transfer accuracy, using the
VTAB transfer learning test suite [Zhai et al., 2019], of different learning methods and
accuracy. We observe that SimCLR, the only self-supervised learning method, has a poor
transfer accuracy given its ImageNet accuracy in comparison to the other training methods.

Clustering. The Clustering objective is to learn a grouping of the data. Commonly, clus-

tering groups the data according to a similarity measure between the representation of the

samples. Examples of algorithms implementing this idea include K-Means [Lloyd, 2006] and

spectral clustering [Donath and Hoffman, 1973]. More recently, the idea to leverage the rep-

resentation of a neural network to learn the clusters has started to emerge [Hu et al., 2017,

Caron et al., 2018]. Deep cluster [Caron et al., 2018] propose to iteratively alternate between

pseudo-labelling the data by applying k-means on the representation of a convolutional neu-

ral network and training the network using standard classification with the pseudo-labels.

RIM [Gomes et al., 2010] and IMSAT [Hu et al., 2017] learn a mapping c : X → C, where

C ∈ Rk is a continuous space representing a soft clustering of X , by optimizing the following

objective:

min
c
λR(c)− I(X ; C), (1.1.5)
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where λ > 0 is a Lagrange multiplier, I is the mutual information defined as

I(X ; C) = H(C)−H(C|X ) (1.1.6)

The first term H(C) encourages the samples to be distributed uniformly across the clusters,

and the second term encourages the prediction to be confident (i.e. pushes the representation

to be a one-hot vector). R of Equation 1.1.5 is a regularizer. For example, IMSAT uses the

following regularizer:

R(c) = Ex∼Px||c(x)− c(x′)||22, (1.1.7)

where x′ = t(x), and t ∼ T is a set of transformations of the original image, such as affine

transformations. Essentially, this approach is similar to the contrastive method presented

above with the difference that we constraint the samples to cluster while pressuring them to

be invariant under the set of transformations T .

Clustering algorithms are usually evaluated on their ability to group the data according

to some semantic labels defined externally, for example, by a human.

Unsupervised domain adaptation. Domain adaptation aims at adapting a function

trained on a domain X with labelled samples to a domain Y with few or no labelled samples.

Unsupervised domain adaptation refers to the case where the target domain Y is unlabelled

during training.

Ben-David et al. [2010] shown that the error of a hypothesis function h on the target

domain Y is upper bounded by the following

LY(h) ≤ LX (h) + d(X ,Y) + min
h′
LX (h′) + LY(h′), (1.1.8)
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where Lx is the error and can be computed given a loss function, for example the cross

entropy and d is defined as the H-divergence [Kifer et al., 2004].

We notice that the second term on the right-hand side of the bound of equation 1.1.8 is

concerned with the divergence between two domains. To that end, the first approach to do-

main adaptation is to learn a representation of X and Y that minimizes the distance. Ganin

et al. [2016] proposed the gradient reversal procedure that aims to match the marginal dis-

tribution of intermediate hidden representations of a neural network across domains. If h

is a neural network and can be decomposed as h = h2 ◦ h1, and assume that we have an-

other parametric function D that serves as domain discriminator, then the gradient reversal

objective to be minimized is defined as:

Lgv(h1,X ,Y) = max
D

Ex∼X [logD(h(x))] + Ey∼Y [log(1−D(h(y)))].

Minimizing this objective with respect to h1 can also be seen as applying a GAN loss [Good-

fellow et al., 2014] on a representation of a neural network effectively minimizing the dis-

crepancy between h1(X ) and h1(Y).

Minimizing the discrepancy between h1(X ) and h1(Y) does not guarantee an alignment

of the semantic categories of X and Y at the representation level. For example, assuming

that X and Y have two label categories. Then, the representation h1(X ) with label = 0

could overlap with the representation h1(Y) with label = 1 and vice versa. To counteract

this problem, Shu et al. [2018] propose to regularize the training via the cluster assumption.

The cluster assumption [Chapelle and Zien, 2005] is simply an assumption that the data is

clusterable into classes. In other words, it states that the decision boundaries of h2 should be

in low-density regions of the data. One way to push forward this assumption is to encourage

the representation of both X and Y to clusters into dense regions. Therefore, assuming
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that h2 is relatively low capacity (for example a linear classifier), losing alignment during

training would imply that the decision boundary of h2 would traverse a dense region of

h1(X ) of h1(Y). To enforce the cluster assumption, Grandvalet and Bengio [2005] propose

to minimize the following objective on the conditional entropy of a prediction given a sample:

Lc(h,Py) = −Ey∼Pyh(y) log h(y).

However, such a constraint is applied to an empirical distribution in practice. Hence, noth-

ing stops the classifier from abruptly changing its predictions for any samples outside of the

training distribution. This motivates the following constraints. Virtual adversarial train-

ing [Shu et al., 2018] proposes to alleviate this problem by constraining h to be locally-

Lipschitz around an ε-ball. Borrowing from Miyato et al. [2018], they propose the additional

regularizer to encourage local-lipschitzness:

Lv(h,P) = Ex∼P max
||r||2≤ε

DKL(h(x) ||h(x+ r)),

with ε > 0. Virtual mixup training [Mao et al., 2019], with a similar motivation, pro-

poses that the prediction of an interpolated point x̃ should itself be an interpolation of the

predictions at x1 and at x2. The interpolated samples are defined as

x̃ = αx1 + (1− α)x2,

ỹ = αh(x1) + (1− α)h(x2),

with α ∼ U(0,1), where U(0,1) is a continuous uniform distribution between 0 and 1.

The proposed objective is then simply

Lm(h,P) = −E(x,y)∼Pỹ
> log h(x̃).
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These objectives are composed to give the overall optimization problem:

min
h
LX (h,Px) + λ1Lgv(h1,Px,Py) + λ2Lc(h,Py)+

λ3Lv(h,Px) + λ4Lv(h,Py) + λ5Lm(h,Px) + λ6Lm(h,Py).

The pressure from the gradient reversal and the objective implementing the cluster as-

sumption, combined with the architectural bias, encourage the representation to cluster the

samples according to their semantic categories.

In the next chapter, we will combine the ideas presented in this section to learn do-

main invariant clusters without supervision to improve the Unsupervised Domain Translation

methods. Next, we review some idea from the community of artificial language emergence

that will be useful for chapter 3.

1.2. Emergence of structure in artificial languages

Language has powerful properties that enable us to communicate and understand novel

ideas. Assuming that a speaker and a listener agree on syntactic and grammatical rules, they

can exchange and build knowledge of things they have never seen or even imagined before.

This capacity may be attributed to the compositional nature of language: the semantics

of a complex sentence is entirely determined by the semantics of its constituents and the

syntactic rules. For example, the nominal sentence "the blue cat" is entirely determined by

the syntactic rules of English and the semantics of the words "the," "blue," and "cat." We

can further compose "The blue cat" with another nominal sentence – e.g., "the red cat" –

and conjunction to define a more complex idea, which can be further combined. Therefore,

someone that knows a set of semantical elements can recursively and combinatorially combine

them to obtain a countably infinite number of complex semantical elements.
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Another attractive property of language is that the capacity to understand a complex

sentence implies the capacity to understand structurally related sentences. For example, if

someone can understand the nominal sentences "the blue cat" and "the red dog," then they

should be able to understand the nominal sentences "the red cat" and "the blue dog." This

property, called systematicity, comes from the fact that the sentences we understand share

structure due to the syntactical rules. We note that this property is closely related to out-

of-distribution generalization. The fact that we can understand structurally related complex

sentences without encountering them a priori is a property of generalization that we would

want our models to enjoy. We take inspiration from the language emergence literature to

explore how such properties could emerge and whether we can set the same condition in a

representation learning framework.

The origin of language and why it has its structural properties is still up for debate. Many

theories exist for describing the emergence of the structure in language, ranging from being

innate [Chomsky, 1959] to having emerged due to several pressures and constraints [Kirby

and Hurford, 2002, Christiansen and Chater, 2008]. This document entertains the later idea

and hypothesizes that compositional language emerges given the right external conditions.

Artificial language emergence is typically framed as the solution to a coordination prob-

lem among N agents [Lewis, 1969]. The optimal language that emerges between the agents

is merely a Nash equilibrium of the optimization problem that maximizes the agents’ utility

when both of them have common interests and are incentivized to coordinate and commu-

nicate. However, such language only needs to serve the purpose of the agents and does not

need to be compositional. In other words, without more constraints, an optimal language

may be an idiosyncratic language that correctly allows the agent to signal their intent but

does not generalize to new contexts. For example, Vervet Monkey’s language for signalling
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the presence of a predator is idiosyncratic in the sense that it has a different sound for the

different predators [Oliphant and Batali, 1997]. Their language for signalling the presence

of a predator has not reached a point where it is compositional, perhaps because it is not

needed to serve its purpose.

Kirby and Hurford [2002] suggest that compositionality in natural languages emerged

in part due to a biological pressure since compositionality can improve organization and

efficiency, which in turn can help with survival and reproduction. But, also due to cultural

transmission, the transmission from generation to generation of a growing and evolving

language. The pressure to transmit a rich set of meanings, with compressive constraints due

to having to propagate it to new generations, while preserving the expressivity of the language

could have pressured the language to develop a compositional structure. Christiansen and

Chater [2008] propose that language emerged solely due to a set of constraints that could

have biased the language to have a compositional structure through cultural evolution. Some

constraints include the number of semantical elements that we can remember and perceptuo-

motors constraints.

The expressivity of a language relates to the number of different signals available to

describe a set of meanings. For example, a language is expressive if each meaning has its

own signal and is degenerate – we call it collapsed in the ML literature – if all the meaning

maps to a single signal. Kirby et al. [2015] demonstrate, in a simulation of artificial language

and a clinical trial, that having both an objective to preserve the expressivity of the language

and a compressive prior leads to compositionality in the language. However, having only

one pressure leads to undesirable effects. Solely a compressive pressure leads to a degenerate

language. An expressive pressure exclusively leads to a holistic language where each meaning

maps to an idiosyncratic signal. One can see that a compositional language has a vocabulary
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Fig. 2. Taken from: . Illustration of the Iterated Learning Model. The subset of a holistic
language describing a set of sketches at iteration 0 is being transmitted to the first agent
which learns it and in turns transmits a subset of it learned language to the next agent.
This procedure is iterated until a compositional language emerges. At the last iteration, we
observe a structured language that describe the color, the shape and the line’s pattern.

that is exponentially smaller for the same expressivity that a holistic language. Assuming

that the language is fully compositional, each semantic element can be combined with the

other semantic elements to produce a distinct meaning. Therefore, assuming that we have

a composition of L semantic elements taken from a set of V possible elements, then the

number of meaning is upper bounded by Ω(V L). In comparison, the number of meanings

in a holistic language scale in O(V ). While an emergent language is generally not fully

compositional, nor fully holistic [Kirby et al., 2015], this argument demonstrates the relation

between compressibility, expressivity and compositionality.

Kirby et al. [2014] proposed the Iterated Learning Model as a way to simulate cultural

transmission and to study this information bottleneck hypothesis. The idea is that com-

positional language can emerge from holistic and unstructured language if the language

is repeatedly transmitted via a restricted set of utterances to new agents oblivious to the

language. This transmission to new agents induces a compressive pressure that leads to

compositionality in a language, as demonstrated in several experiments [Kirby et al., 2014,

37



Kirby and Hurford, 2002, Ren et al., 2020b]. We depict a sketch of the learning dynamics

in Figure 2 where we see the evolution of a language describing a set of sketches. As the

number of iteration grows, the language evolves from being holistic to being compositional,

where the different attributes are encoded by a set of coherent letters at specific locations.

In other words, we can observe a set of semantic elements – describing the attributes – with

syntactic rules describing the observation as a whole.

The Iterated Learning Model can be applied in different type of communication

games. We will review how cultural transmission can induce structure in the Signaling

game [Oliphant and Batali, 1997, Lewis, 1969].

1.2.1. Communication games

Communications games are multi-agents games. This document will consider games

between only two agents for simplicity. The two agents are a sender f and a receiver g. The

training setup involves the sender signalling a message to the receiver by mapping from a

set of meaning, X , to a set of signals, Z. The receiver performs some task using either X ,

Z or both depending on the game.

Object selection game. In the object selection game, a sender is given an object to encode

into a discrete signal fθ : X → Z. The object is often defined as a symbolic input representing

the attributes or, in some cases, as an image [Lazaridou et al., 2018, Choi et al., 2018]. The

receiver receives the message z as well as a set of N objects [x1,x2, . . . ,xn] and has to choose

the same object that the sender received and communicated to the receiver. In other words,

the receiver maps gψ1 : Z → Rd and maps gψ2 : X → Rd. An embedding (ci)ni=1, where

ci := arg max gψ1(z) · gψ2(xi)> is generated for each sample given to the receiver. Both

agents are rewarded if the receiver correctly choose the right object c′ that was given to
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the sender, which create an incentive to collaborate [Das et al., 2017, Kottur et al., 2017,

Ren et al., 2019]. We can define pf (z|x) the policy of the sender to select a message z and

pg(c̄|c1,...,cn) the policy of the receiver to select the right object. [Ren et al., 2019] defines the

following update rules for the sender and the receiver using REINFORCE [Williams, 1992]:

∇θJ := E [R(c̄,x)∇θ log pf (z|x) + λf∇θH[pf (z|x)]] , (1.2.1)

∇ψJ := E [R(c̄,x)∇ψ log pg(c̄|z,c1,...,ck) + λg∇ψH(pg(c̄|x, c1,..., cn))] . (1.2.2)

Ren et al. [2019] proposed an iterated learning version of this game. An iteration is

divided into three phases: The interaction phase, the transmission phase and the learning

phase. The interaction phase corresponds to the selection game presented above. The

transmission phase corresponds to generating a set of N pairs from a subset of the training

set:

Z := {(xi, zi)}Ni=1, (1.2.3)

where zi ∼ pf (z|xi). Z is then used in the learning phase. The learning phase is used to

pre-train a newly initialized sender fθt+1 to imitate the generated messages of the previous

sender given an observation. This is done as follows:

min
θt+1

E(x,z)∼Z l(fθt+1(x), z), (1.2.4)

where l is the cross-entropy. The transmission and the training phase procedures are similar

to the distillation procedure Hinton et al. [2015] used to train a network in machine learning.

The difference is that z is a discrete sample from a categorical distribution p(z|x), rather

than a single soft-target. In summary, the Neural Iterated Learning procedure trains a sender

and a receiver using a communication game followed by a noisy hard-distillation procedure
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to pre-train a new sender for the next iteration of the communication game. Algorithm 1

depicts this procedure.

Algorithm 1 Neural Iterated Learning
Require: X , fθ0 , gφ0 , Niter, Minteraction.
θ0 randomly initialized
φ0 randomly initialized
t← 0
while Niter 6= 0 do

S ← 0
while S 6= M do

θt ← θt + α∇θtJ . Update using equation 1.2.1.
ψt ← ψt + α∇ψtJ . Update using equation 1.2.2.
S ← S + 1

end while
Z ← Generation(X , fθt) . Generate using equation 1.2.3.
θt+1 ← Distillation(Z, fθt+1) . Distill using equation 1.2.4.
ψt+1 randomly initialized
t← t+ 1
Niter ← Niter − 1

end while

Topographical similarity. The topographical similarity (ρ) is a measure that captures

how much a message z retains the structure of the original object description x. It is defined

as the negative Spearman’s correlation between the pairwise cosine similarities of object

vectors and the pairwise Levenshtein distances between all messages. We take the negative

Spearman’s correlation since we correlate distances and similarities. Hence, a topographical

similarity of 1 indicates that the message preserves the object description structure and

indicates a compositional language.

Using the topographical similarity, Ren et al. [2019] demonstrated that resetting the

sender, the receiver or both increased the structure of the generated messages, as demon-

strated in Figure 3a. Their hypothesis is that language with a topographical similarity should

be easier to learn and thus more likely to be selected than a language with a small topo-

graphical similarity. They empirically demonstrate their claim as reproduced in Figure 3b
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Fig. 3. Figures taken from [Ren et al., 2019]. (a) Topographical similarity (also called
topological similarity) given which of the sender (Alice) and/or the receiver (Bob) gets
resetted and retrained. (b) The training accuracy given the topographical similarity of
the message of the sender. (c) Relationship between the topographical similarity and the
validation performance on the object selection game.

where they demonstrate the learning speed given the accuracy of the agents on the object

selection game and observe that a lower topographical similarity induces a faster learning

speed.

They also demonstrate a linear relationship between the performance in the object selec-

tion game on unseen samples and the topographical similarity, shown in Figure 3c. The idea

that a more structured representation induces increased generalization is interesting and of

general interest to the representation learning community.

We now turn to our first contribution on learning domain invariant representation with-

out supervision and its application on Unsupervised Domain Translation. While the ideas

presented in this Section are not closely related to the content of the next chapter, they will

be in the subsequent chapters.
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Chapter 2

Integrating Categorical Semantics into

Unsupervised Domain Translation

Note: This chapter has been published as an article to the Ninth International Conference

on Learning Representations (ICLR 2021) with the following co-authors: Samuel Lavoie,

Faruk Ahmed and Aaron Courville.

2.1. Introduction

Domain translation has sparked a lot of interest in the computer vision community follow-

ing the work of Isola et al. (2016) on image-to-image translation. This was done by learning

a conditional GAN [Mirza and Osindero, 2014], in a supervised manner, using paired samples

from the source and target domains. CycleGAN [Zhu et al., 2017a] considered the task of

unpaired and unsupervised image-to-image translation, showing that such a translation was

possible by simply learning a mapping and its inverse under a cycle-consistency constraint,

with GAN losses for each domain.



But, as has been noted, despite the cycle-consistency constraint, the proposed translation

problem is fundamentally ill-posed and can consequently result in arbitrary mappings [Be-

naim et al., 2018, Galanti et al., 2018, de Bézenac et al., 2019]. Nevertheless, CycleGAN

and its derivatives have shown impressive empirical results on a variety of image translation

tasks. Galanti et al. [2018] and de Bézenac et al. [2019] argue that CycleGAN’s success is

owed, for the most part, to architectural choices that induce implicit biases toward minimal

complexity mappings. That being said, CycleGAN, and follow-up works on unsupervised

domain translation, have commonly been applied on domains in which a translation en-

tails little geometric changes and the style of the generated sample is independent of the

semantic content in the source sample. Commonly showcased examples include translating

edges↔shoes and horses↔zebras.

While these approaches are not without applications, we demonstrate two situations

where unsupervised domain translation methods are currently lacking. The first one, which

we call Semantic-Preserving Unsupervised Domain Translation (SPUDT), is defined as trans-

lating, without supervision, between domains that share common semantic attributes. Such

attributes may be a non-trivial composition of features obfuscated by domain-dependent

spurious features, making it hard for the current methods to translate the samples while pre-

serving the shared semantics despite the implicit bias. Translating between MNIST↔SVHN

is an example of translation where the shared semantics, the digit identity, is obfuscated by

many spurious features, such as colours and background distractors, in the SVHN domains.

In section 2.4.1, we take this specific example and demonstrate that using domain invariant

categorical semantics improves the digit preservation in UDT.

The second situation that we consider is Style-Heterogeneous Domain Transla-

tion (SHDT). SHDT refers to a translation in which the target domain includes many
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semantic categories, with a distinct style per semantic category. We demonstrate that, in

this situation, the style encoder must be conditioned on the shared semantics to generate a

style consistent with the semantics of the given source image. In Section 2.4.2, we consider

an example of this problem where we translate an ensemble of sketches, with different

objects among them, to real images.

In this paper, we explore both the SPUDT and SHDT settings. In particular, we demon-

strate how domain invariant categorical semantics can improve translation in these settings.

Existing works [Hoffman et al., 2018, Bousmalis et al., 2017] have considered semi-supervised

variants by training a classifier with labels on the source domain. But, differently from them,

we show that it is possible to perform well at both kinds of tasks without any supervision,

simply with access to unlabelled samples from the two domains. This additional constraint

may further enable applications of domain translation in situations where labelled data is

absent or scarce.

To tackle these problems, we propose a method which we refer to as Categorical Se-

mantics Unsupervised Domain Translation (CatS-UDT). CatS-UDT consists of two steps:

(1) learning an inference model of the shared categorical semantics across the domains of

interest without supervision and (2) using a domain translation model in which we condition

the style generation by inferring the learned semantics of the source sample using the model

learned at the previous step. We depict the first step in Figure 1b and the second in Figure 2.

More specifically, the contributions of this work are the following:

• Novel framework for learning invariant categorical semantics across domains (Sec-

tion 2.3.1).

• Introduction of a method of semantic style modulation to make SHDT generations

more consistent (Section 2.3.2).
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• Comparison with UDT baselines on SPUDT and SHDT highlighting their exist-

ing challenges and demonstrating the relevance of our incorporating semantics into

UDT (Section 2.4).

2.2. Related works
Domain translation is concerned with translating samples from a source domain to a

target domain. In general, we categorize a translation that uses pairing or supervision

through labels as supervised domain translation and a translation that does not use pairing

or labels as unsupervised domain translation.

Supervised domain translation methods have generally achieved success through

either the use of pairing or the use of supervised labels. Methods that leverage the use of

category labels include Taigman et al. [2017], Hoffman et al. [2018], Bousmalis et al. [2017].

The differences between these approaches lie in particular architectural choices and auxiliary

objectives for training the translation network. Alternatively, Isola et al. [2016], Gonzalez-

Garcia et al. [2018], Wang et al. [2018, 2019], Zhang et al. [2020] leverage paired samples

as a signal to guide the translation. Also, some works propose to leverage a segmentation

mask [Tomei et al., 2019, Roy et al., 2019, Mo et al., 2019]. Another strategy is to use

the representation of a pre-trained network as semantic information [Ma et al., 2019, Wang

et al., 2019, Wu et al., 2019, Zhang et al., 2020]. Such a representation typically comes from

the intermediate layer of a VGG [Liu and Deng, 2015] network pre-trained with labelled

ImageNET [Deng et al., 2009]. Conversely to our work, [Murez et al., 2018] propose to use

image-to-image translation to regularize domain adaptation.

Unsupervised domain translation considers the task of domain translation without

any supervision, whether through labels or pairing of images across domains. CycleGAN [Zhu
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(a) ResNET-50 trained using
MOCO.
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Domain adaptation

(b) Domain invariant categorial representation learning.

Fig. 1. (a) T-SNE embeddings of the representation of Sketches and Reals taken from a
hidden layer for a pre-trained model on ImageNET, (b) Sketch of our method for learning a
domain invariant categorial semantics.

et al., 2017a] proposed to learn a mapping and its inverse constrained with a cycle-consistency

loss. The authors demonstrated that CycleGAN works surprisingly well for some translation

problems. Later works have improved this class of models [Liu et al., 2017, Kim et al.,

2017, Almahairi et al., 2018, Huang et al., 2018, Choi et al., 2017, 2019, Press et al., 2019],

enabling multi-modal and more diverse generations. But, as shown in Galanti et al. [2018],

the success of these methods is mostly due to architectural constraints and regularizers that

implicitly bias the translation toward mappings with minimum complexity. We recognize the

usefulness of this inductive bias for preserving low-level features like the pose of the source

image. This observation motivates the method proposed in Section 2.3.2 for conditioning

the style using the semantics.

2.3. Categorical Semantics Unsupervised Domain

translation

In this section, we present our two main technical contributions. First, we discuss an

unsupervised approach for learning categorical semantics that is invariant across domains.
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Next, we incorporate the learned categorical semantics into the domain translation pipeline

by conditioning the style generation on the learned categorical-code.

2.3.1. Unsupervised learning of domain invariant categorical se-

mantics

The framework for learning the domain invariant categorical representation, summarized

in Figure 1b, is composed of three constituents: unsupervised representation learning, clus-

tering and domain adaptation. First, embed the data of the source and target domains into

a representation that lends itself to clustering. This step can be ignored if the raw data

is already in a form that can easily be clustered. Second, cluster the embedding of one of

the domains. Third, use the learned clusters as the ground truth label in an unsupervised

domain adaptation method. We provide more details on the methods used in Section 2.4.

Here, we motivate the utility of each of the constituents and describe how they are used in

the present framework.

Representation learning. Pre-trained supervised representations have been used in

many instances as a way to preserve alignment in domain translation [Ma et al., 2019, Wang

et al., 2019]. In contrast to prior works that use models trained with supervision, we use

models trained with self-supervision [van den Oord et al., 2018a, Hjelm et al., 2019a, He

et al., 2020, Chen et al., 2020b]. Self-supervision defines objectives that depends only on the

intrinsic information within data. This allows for the use of unlabelled data, which in turn

could enable the applicability of domain translation to modalities or domains where labelled

data is scarce. In this work, we consider the noise contrastive estimation [van den Oord et al.,

2018b] which minimizes the distance in a normalized representation space between an anchor

sample and its transformation and maximizes the distance between the same anchor sample
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and another sample in the data distribution. Formally, we learn the embedding function

d : X → RD of samples x ∈ X as follows:

arg min
d
−Exi∼X log exp(d(xi) · d(x′i)/τ)∑K

j=0 exp(d(xi) · d(xj)/τ)
, (2.3.1)

where τ > 0 is a hyper-parameter, xi is the anchor sample with its transformation x′i = t(xi)

and t : X → X defines the set of transformations that we want our embedding space to be

invariant to.

While other works use the learned representation directly in the domain translation

model, we propose to use it as a leverage to obtain a categorical and domain invariant

embedding as described next. In some instances, the data representation is already amenable

to clustering. In those cases, this step of representation learning can be ignored.

Clustering allows us to learn a categorical representation of our data without supervi-

sion. Some advantages of using such a representation are as follows:

• A categorical representation provides a way to select exemplars without supervision

by simply selecting an exemplar from the same categorical distribution of the source

sample.

• The representation is straightforward to evaluate and to interpret. Samples with the

same semantic attributes should have the same cluster.

In practice, we cluster one domain because, as we see in Figure 1a, the continuous embedding

of each domain obtained from a learned model may be disjoint when they are sufficiently

different. Therefore, a clustering algorithm would segregate each domain into its own clusters.

Also, the domain used to determine the initial clusters is important as some domains may

be more amenable to clustering than others. Deciding which domain to cluster depends on
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the data and the choice should be made after evaluation of the clusters or inspection of the

data.

More formally, consider X0 ⊂ RN be the domain chosen to be clustered. Assume a

given embedding function d : X0 → RD that can be learned using self-supervision. If X0

is already cluster-able, d can be the identity function. Let c : RD → C be a mapping

from the embedding of X0 to the space of clusters C. We propose to cluster the embedding

representation of the data:

arg min
c

C(c, d(X0)), (2.3.2)

where C is a clustering objective. The framework is agnostic to the clustering algorithm used.

In our experiments (Section 2.4), we considered IMSAT [Hu et al., 2017] for clustering MNIST

and Spectral Clustering [Donath and Hoffman, 1973] for clustering the learned embedding

of our real images.

Unsupervised domain adaptation. Given clusters learned using samples from a

domain X0, it is unlikely that such clusters will generalize to samples from a different domain

with a considerable shift. This can be observed in Figure 1a where, if we clustered the

samples of the real images, it is not clear that the samples from the Sketches domain would

semantically cluster as we expect. That is, samples with the same semantic category may

not be grouped in the same cluster.

Unsupervised domain adaptation [Ben-David et al., 2010] tries to solve this problem

where one has one supervised domain. However, rather than using labels obtained through

supervision from a source domain, we propose to use the learned clusters as ground-truth

labels on the source domain. This modification allows us to adapt and make the clusters

learned on one domain invariant to the other domain.
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Fig. 2. Our proposed adaptation to the image-to-image framework for CatS-UDT. Left:
generate the style using a mapping network conditioned on both noise z ∼ N (0,1) and the
semantics of the source sample h(x0). Right: infer style of an exemplar x2 using a style
encoder and h(x0).

More formally, given two spaces X0 ∈ RN , X1 ∈ RN representing the data space of

domains 0 and 1 respectively, given a C-way one-hot mapping of the embedding of domain

0 to clusters, c : d(X0) → C (C ⊂ {0,1}C), we propose to learn an adapted clustering

h : X0 ∪ X1 → C. We do so by optimizing:

arg min
h
−Ex0∼X0c(d(x0)) log h(x0) + Ω(h,X0,X1). (2.3.3)

Ω represents the regularizers used in unsupervised domain adaptation. The framework is also

agnostic to the regularizers used in practice. In our experiments, the regularizers comprised

of gradient reversal [Ganin et al., 2016], VADA [Shu et al., 2018] and VMT [Mao et al.,

2019]. We describe those regularizers in more detail in Section 1.1.2.

2.3.2. Conditioning the style encoder of Unsupervised Domain

Translation

Recent methods for unsupervised image-to-image translation have two particular assets:

(1) they can work with few training examples, and (2) they can preserve spatial coherence

such as pose. With that in mind, our proposition to incorporate semantics into UDT, as
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depicted in figure 2, is to incorporate semantic-conditioning into the style inference of a

domain translation framework. We will consider that the semantics is given by a network (h

in Figure 2). The rationale behind this proposition originates from the conclusions by Galanti

et al. [2018], de Bézenac et al. [2019] that the unsupervised domain translation methods work

due to an inductive bias toward minimum complexity mappings. By conditioning only the

style encoder on the semantics, we preserve the same inductive bias in the spatial encoder,

forcing the generated sample to preserve some spatial attributes of the source sample, such

as pose, while conditioning its style on the semantics of the source sample. In practice, we

can learn the domain invariant categorical semantics, without supervision, using the method

described in the previous subsection.

There can be multiple ways for incorporating the style into the translation framework.

In this work, we follow an approach similar to the one used in StyleGAN [Karras et al., 2019]

and StarGAN-V2 [Choi et al., 2019]. We incorporate the style, conditioned on the semantics,

by modulating the latent feature maps of the generator using an Adaptive Instance Norm

(AdaIN) module [Huang and Belongie, 2017]. Next, we describe each network used in our

domain translation model and the training of the domain translation network.

2.3.2.1. Networks and their functions.

Content encoders, denoted e, extract the spatial content of an image. It does so by

encoding an image, down-sampling it to a representation of resolution smaller or equal than

the initial image, but greater than one to preserve spatial coherence.

Semantics encoder, denoted h, extracts semantic information defined as a categorical

label. In our experiments, the semantics encoder is a pre-trained network.
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Mapping networks, denoted f , encode z ∼ N (0,1) and the semantics of the source

image to a vector representing the style. This vector is used to condition the AdaIN module

used in the generator which modulates the style of the target image.

Style encoders, denoted s, extract the style of an exemplar image in the target domain.

This style is then used to modulate the feature maps of the generator using AdaIN.

Generator, denoted g, generates an image in the target domain given the content and

the style. The generator upsamples the content, injecting the style by modulating each layer

using an AdaIN module.

2.3.2.2. Training. Let x0 ∼ Px0 and x1 ∼ Px1 be samples from two probability distribu-

tions on the spaces of our two domains of interest. Let z ∼ N (0, 1) samples from a Gaussian

distribution. Let y ∼ B(0.5) defines the domain, sampled from a Bernoulli distribution, and

its inverse ȳ := 1 − y. We define the following objectives for samples generated with the

mapping networks f and the style encoder s:

Adversarial loss [Goodfellow et al., 2014]. Constrain the translation network to gener-

ate samples in distribution to the domains. Consider d·· the discriminators 1.

Lfadv := Ey
[
Exȳ log dfȳ(xȳ) + ExyEz log(1− dfȳ(g(ey(xy), fȳ(h(xy), z))))

]
,

Lsadv := Ey
[
Exȳ log dsȳ(xȳ) + ExyExȳ∼Pxȳ |h(xy) log(1− dsȳ(g(ey(xy), sȳ(h(xy), xȳ))))

]
.

(2.3.4)

Cycle-consistency loss [Zhu et al., 2017a]. Regularizes the content encoder and the gen-

erator by enforcing the translation network to reconstruct the source sample.

Lfcyc := Ey
[
ExyEz |xy − g(eȳ(g(ey(xy), fȳ(h(x1), z))), sy(h(xy), xy))|1

]
,

Lscyc := Ey
[
ExyExȳ∼Pxȳ |h(xy) |xy − g(eȳ(g(ey(xy), sȳ(h(x1), xȳ))), sy(h(xy), xy))|1

]
.

(2.3.5)

1Different of d, the embedding function, that we introduced in the previous subsection.
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Style-consistency loss [Almahairi et al., 2018, Huang et al., 2018]. Regularizes the trans-

lation networks to use the style code.

Lfsty := Ey
[
ExyEz |fȳ(h(xy), z)− sȳ(h(xy), g(ey(xy), fȳ(h(xy), z)))|1

]
,

Lssty := Ey
[
ExyExȳ∼Pxȳ |h(xy) |sȳ(h(xy), xȳ)− sȳ(h(xy), g(ey(xy), sȳ(h(xy), xȳ)))|1

]
.

(2.3.6)

Style diversity loss [Yang et al., 2019, Choi et al., 2017]. Regularizes the translation

network to produce diverse samples.

Lfsd := −Ey
[
ExyEz,z′ |g(ey(xy), fȳ(h(xy), z))− g(ey(xy), fȳ(h(xy), z′))|1

]
,

Lssd := −Ey[ExyExȳ ,x′ȳ∼Pxȳ |h(xy)

∣∣∣g(ey(xy, sȳ(h(xy),xȳ)))− g(ey(xy,sȳ(h(xy),x′ȳ)))
∣∣∣
1
]

(2.3.7)

Semantic loss. We introduce the following semantic loss as the cross-entropy between

the semantic code of the source samples and that of their corresponding generated samples.

We use this loss to regularise the generation to be semantically coherent with the source

input.

Lfsem := −Ey
[
Exy ,z[h(xy) log(h(g(ey(xy), fȳ(h(xy), z))))]

]
,

Lssem := −Ey
[
ExyExȳ∼Pxȳ |h(xy) [h(xy) log(h(g(ey(xy), sȳ(h(xy), xȳ))))]

]
.

(2.3.8)

Finally, we combine all our losses and solve the following optimization.

arg min
g,e·,f·,s·

arg max
d··
Lsadv + Lfadv + λsty(Lssty + Lfsty) + λcyc(Lscyc + Lfcyc)+

λsd(Lssd + Lfsd) + λsem(Lssem + Lfsem),
(2.3.9)

where λsty > 0, λcyc > 0, λsd > 0 and λsem > 0 are hyper-parameters defined as the weight

of each losses.
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2.4. Experiments

We compare CatS-UDT with other unsupervised domain translation methods and demon-

strate that it shows significant improvements on the SPUDT and SHDT problems. We then

perform ablation and comparative studies to investigate the cause of the improvements on

both setups. We demonstrate SPUDT using the MNIST [LeCun and Cortes, 2010] and

SVHN [Netzer et al., 2011] datasets and SHDT using Sketches and Reals samples from the

DomainNet dataset [Peng et al., 2019]. We present the datasets in more detail and the

baselines in Appendix A.1.1 and Appendix A.1.2 respectively.

2.4.1. SPUDT with MNIST↔SVHN

Adapted clustering. We first cluster MNIST using IMSAT [Hu et al., 2017]. We

reproduce the accuracy of 98.24%. Using the learned clusters as ground-truth labels for

MNIST, we adapt the clusters using the VMT [Mao et al., 2019] framework for unsupervised

domain adaptation. This trained classifier achieves an accuracy of 98.20% on MNIST and

88.0% on SVHN.

Evaluation. We consider two evaluation metrics for SPUDT. (1) Domain translation

accuracy, to indicate the proportion of generated samples that have the same semantic

category as the source samples. To compute this metric, we first trained classifiers on the

Table 1. Comparison with the baselines. Domain translation accuracy and FID ob-
tained on MNIST (M) ↔SVHN (S) for the different methods considered. The last column
is the test classification accuracy of the classifier used to compute the metric. *: Using weak
supervision.

Data CycleGAN MUNIT DRIT Stargan-V2 EGSC-IT* CatS-UDT Target

A
cc M→S 10.89 10.44 13.11 28.26 47.72 95.63 98.0

S→M 11.27 10.12 9.54 11.58 16.92 76.49 99.6

FI
D M→S 46.3 55.15 127.87 66.54 72.43 39.72 -

S→M 24.8 30.34 20.98 26.27 19.45 6.60 -
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(c) Varying λsem.

Fig. 3. Studies on the effect on the translation accuracy on MNIST↔SVHN of (a) Ab-
lating each loss by setting their λ = 0. (b) Using VGG, MoCO, the presented method for
learning categorical semantics without adaptation and with adaptation respectively to train
a semantic encoder. (c) Varying λsem.

target domains. The classifiers obtain an accuracy of 99.6% and 98.0% on the test set of

MNIST and SVHN respectively – as reported in the last column of Table 1. (2) FID [Heusel

et al., 2017] to evaluate the generation quality.

Comparison with the baselines. In Table 1, we show the test accuracies obtained

on the baselines as well as with CatS-UDT. We find that all of the UDT baselines per-

form poorly, demonstrating the issue of translating samples through a large domain-shift

without supervision. However, we do note that StarGAN-V2 obtains slightly higher than

chance numbers for MNIST→SVHN. We attribute this to a stronger implicit bias toward

identity. EGSC-IT, which uses supervised labels, shows better than chance results on both

MNIST→SVHN and SVHN→MNIST, but not better than CatS-UDT.

Ablation study – the effect of the losses In Figure 3a, we evaluate the effect of

removing each of the losses, by setting their λ = 0, on the translation accuracy. We observe

that the semantic loss provides the biggest improvement. We run the same analysis for

the FID in Appendix A.2.2 and find the same trend. The integration of the semantic loss,

therefore, improves the preservation of semantics in domain translation and also improves

the generation quality. We also inspect more closely λsem and evaluate the effect of varying

it in Figure 3c. We observe a point of diminishing returns, especially for SVHN→MNIST.
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We observe that the reason for this diminishing return is that for a λsem that is too high, the

generated samples resemble a mixture of the source and the target domains, rendering the

samples out of the distribution in comparison to the samples used to train the classifier used

for the evaluation. We demonstrate this effect and discuss it in more detail in Appendix A.2.2

and show the same diminishing returns for the FID.

Comparative study – the effect of the semantic encoder. In Figure 3b, we

evaluate the effect of using a semantic encoder trained using a VGG [Liu and Deng, 2015]

on classification, using a ResNet50 on MoCo [He et al., 2020], to cluster MNIST but not

adapted to SVHN and to cluster MNIST with adaptation to SVHN. We observe that the use

of an adapted semantic network improves the accuracy over its non-adapted counterpart. In

Appendix A.2.2 we present the same plot for the FID. We also observe that the FID degrades

when using a non-adapted semantic encoder. Overall, this demonstrates the importance of

adapting the network inferring the semantics, especially when the domains are sufficiently

different.

CycleGAN DRIT EGSC-IT StarGAN-v2 CatS-UDT (ours)

Fig. 4. Comparison with baselines. Comparing the baselines with our approach for
translating sketches to real images. For each sketch (top row), we sample 5 different styles
generating 5 images in the target domain. For CycleGAN, we copy the generated images 5
times because it is impossible to generate multiple samples in the target domain from the
same source image.
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Table 2. Comparison with the baselines. Comparing the FID obtained on
Sketch→Real for the baselines and our method. We compute the FID per class and
over all the categories.

Data CycleGAN DRIT EGSC-IT StarGAN-V2 CatS-UDT (ours)

Bird 124.10 141.18 101.09 93.58 92.69
Dog 170.12 153.05 145.18 108.62 105.59
Flower 242.84 223.63 225.24 209.91 137.01
Speedboat 189.20 239.94 174.78 127.23 126.18
Tiger 156.54 245.73 109.97 69.08 41.77
All 102.37 128.45 86.86 65.00 58.69

2.4.2. SHDT with Sketches→Reals

Adapted clustering. The representations of the real images were obtained by using

MoCo-V2 – a self-supervised model – pre-trained on unlabelled ImageNet. We clustered the

learned representation using spectral clustering [Donath and Hoffman, 1973, Luxburg, 2007],

yielding 92.13% clustering accuracy on our test set of real images. Using the learned cluster

as labels for the real images, we adapted our clustering to the sketches by using a domain

adaptation framework – VMT [Mao et al., 2019] – on the representation of the sketches and

the reals. This process yields an accuracy of 75.47% on the test set of sketches and 90.32%

on the test set of real images. More details are presented in Section 1.1.2.

Evaluation. For the Sketch→Real experiments, we evaluate the quality of the gener-

ations by computing the FID over each class individually as well as over all the classes.

We do the former because the translation network may generate realistic images that are

semantically unrelated to the sketch translated.

Comparison with baselines. We depict the issue with the UDT baselines in Figure 4.

For DRIT and StarGAN-V2, the style is independent of the source image. CycleGAN does

not have this issue because it does not sample a style. However, the samples are not visually

appealing. The images generated with EGSC-IT are dependent on the source, but the style
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is not realistic for all the source categories. We quantify the difference in sample quality in

Table 2 where we present the FIDs.

Ablation study – the effect of the losses. In Table 3a, we evaluate the effect

of setting each of removing each of the losses, by setting their λ = 0, on the FIDs on

Sketches→Reals. As in SPUDT, the semantic loss plays an important role. In this case, the

semantic loss encourages the network to use the semantic information. This can be visualized

in Appendix A.2.3 where we plot the translation. We see that λsem = 0 suffers from the same

problem that the baselines suffered, that is that the style is not relevant to the semantic of

the source sample.

Comparative study – the effect of the methods to condition semantics. We

compare different methods of using semantic information in a translation network, in Ta-

ble 3b. None refers to the case where the semantics is not explicitly used in the translation

network, but a semantic loss is still used. This method is commonly used in supervised

domain translation methods such as Bousmalis et al. [2017], Hoffman et al. [2018], Tomei

et al. [2019]. Content refers to the case where we use categorical semantics, inferred using

our method, to condition the content representation. Similarly, we also consider the method

Table 3. Studies on the effect of the translation accuracy on Sketches→Reals on (a) Ab-
lating each loss by setting their coefficient λ = 0 . (b) Methods to condition the translation
network on the semantics: Not conditioning, conditioning the content representation with
categorical semantics, conditioning the content representation with VGG, and conditioning
the style with categorical semantics.

(a) Ablation study of the losses

Data λsem = 0 λsty = 0 λcyc = 0 λSD = 0

Bird 148.32 94.18 108.68 101.97
Dog 131.35 109.50 120.39 106.24
Flower 211.84 124.37 160.97 154.77
Speedboat 185.11 97.52 127.68 99.67
Tiger 153.03 39.24 52.64 41.55

All 69.19 53.43 67.88 58.47

(b) Method to condition on the semantics.

Data None Content Content(VGG) Style

Bird 101.88 405.29 129.69 92.69
Dog 142.79 343.62 229.18 105.59
Flower 196.70 323.52 220.72 137.01
Speedboat 160.57 280.47 192.38 126.18
Tiger 57.29 212.69 228.84 41.77

All 81.69 275.21 112.10 58.59
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used in Ma et al. [2019], in which the semantics comes from a VGG encoder trained with clas-

sification. We label this method Content(VGG). For these two methods, we learn a mapping

from the semantic representation vector to a feature-map of the same shape as the content

representation and then multiply them element-wise – as done in EGSC-IT. Style refers the

presented method to modulate the style. First, for None, the network generates only one

style per semantic class. We believe that the reason is that the semantic loss penalizes the

network for generating samples that are outside of the semantic class, but the translation

network is agnostic of the semantic of the source sample. Second, for Content, the network

fails to generate sensible samples. The samples are reminiscent of what happens when the

content representation is of small spatial dimensionality. This failure does not happen for

Content(VGG). Therefore, from the empirical results, we conjecture that the failure case is

due to a large discrepancy between the content representation and the categorical represen-

tation in addition to a pressure from the semantic loss. The semantic loss forces the network

to use the semantic incorporated in the content representation, thereby breaking the spatial

structure. This demonstrates that our method allows us to incorporate the semantics cat-

egory of the source sample without affecting the inductive bias toward the identity, in this

setup.

2.5. Conclusion and discussion
We discussed two situations where the current methods for UDT are found to be lacking

- Semantic Preserving Unsupervised Domain Translation and Style Heterogeneous Domain

Translation. To tackle these issues, we presented a method for learning domain invariant

categorical semantics without supervision. We demonstrated that incorporating domain

60



invariant categorical semantics greatly improves the performance of UDT in these two situ-

ations. We also proposed to condition the style on the semantics of the source sample and

showed that this method is beneficial for generating a style related to the semantic category

of the source sample in SHDT, as demonstrated in Sketches→Reals.

While we demonstrated that using domain invariant categorical semantics improves the

translation in the SPUDT and SHDT settings, we re-iterate that the quality of the network

used to infer the semantics is important. Efforts on robust machine learning and detections

of failures are also important in this setup for countering this failure.
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Chapter 3

Soft-discretization for self-supervised learning

Note: This chapter is an on-going project in collaboration with Christos Tsirigotis, Max

Schwarzer, Ankit Vani and Aaron Courville.

3.1. Introduction

Self-supervised learning has demonstrated the capacity to learn useful embeddings of

complex and dense data. While this remarkable achievement has been demonstrated on

multiple modalities [Chen et al., 2020a, Saeed et al., 2020, You et al.], the datasets used to

make the demonstrations are typically sampled from the same distribution as the training

set or fine-tuned on the target distribution. Some works started to evaluate the robustness

of the models trained with contrastive objective to distribution shifts and their numbers

indicate that there are still work that needs to be done in that area Djolonga et al. [2021],

Lee et al. [2021].

In this work, we investigate how to make models trained with a self-supervised objective

more robust to systematic distribution shifts. We refer to systematic out-of-distribution

generalization as the case where the set of observations we have access to during training



covers all the possible attributes marginally but where combinations of attributes are not

present in the training set. For example, we may want to evaluate the ability of a neural

network to identify the shape of a red cone if it has only seen instances of the white and blue

cones and other red objects during its training. We consider domain shifts as the case where

the test sets is obtained from applying an intervention that is unobserved in the training

set [Wang et al., 2021]. For example, the test set could be a corrupted version of the training

data [Hendrycks and Dietterich, 2018] or a different rendering [Hendrycks et al., 2021a].

Our observations align with previous works in that self-supervised methods generalize

poorly to datasets with systematic shifts. This observation is consistent across several

datasets such as dSprites, Shapes3D, and MPI3D, and across two self-supervised objectives,

namely noise contrastive estimation [Hjelm et al., 2019b, Chen et al., 2020a] and BYOL [Grill

et al., 2020, Chen and He, 2020].

We propose a module to induce soft-discretization during the training of contrastive

models to improve their out-of-distribution generalization. The pressure comes from a set of

L softmax bottlenecks on independent vectors of size V , with a temperature parameter that

controls for the representation’s sparsity. This module can be seen as implicitly inducing

a set of pseudo-labels for each sample. The inspiration for this module comes from the

language emergence community where they argue that a compositional language, that is, a

language in which the semantics of a complex utterance is fully determined by the semantics

of its constituents and the syntactic rules, can emerge given pressure for expressivity and a

bias for compressibility [Kirby et al., 2015]. The contrastive objective can be seen as pressure

for expressivity; for instance, through the repulsion term in the noise contrastive estimation

objective. Whereas our soft-discretization module can be seen as an architectural bias for

compressibility into a set of L soft-discrete tokens.
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We demonstrate that such a module improves the in-distribution and out-of-distribution

generalization of contrastive models. We present the SDB bottleneck in more detail in

Section 3.3. In Section 3.4, we describe the notion of systematic generalization. In particular,

we propose a scheme to create systematic splits of the data. Finally, we present our set of

results in Section 3.5.

3.2. Background

Note:We refer to the discussion on contrastive learning in Section 1.1.2 for a background

on Noise Contrastive Estimation and BYOL..

3.2.1. Systematic generalization

Systematic generalization of neural networks is being increasingly studied. [Lake and

Baroni, 2018b] study the capacity of recurrent neural networks to generalize to unseen com-

position of tokens for the task of grounded navigation and demonstrate failure of these

models. Montero et al. [2021] and Schott et al. [2021] study the generalization of neural

networks to visual representation task on different systematic out-of-distribution settings

– including presenting unseen composition of attributes – and note that a wide variety of

training setups achieve poor performance. Related to their works, we propose an approach

for defining systematic splits and discuss how to generate harder and easier splits, allowing

us to probe the robustness of the different methods to varying difficulties of training.

More broadly, systematic generalization has been studied in other contexts. In partic-

ular, it has been studied in symbolic games [Ren et al., 2020a, Denamganaï and Walker,

2020, Lazaridou et al., 2016] where the aim is to learn a compositional representation. Also,

in the context of visual question answering, Bahdanau et al. [2019], de Vries et al. [2019]
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also proposed a benchmark to evaluate systematicity. Vani et al. [2021] demonstrated im-

provement on systematic generalization in visual question answering by leveraging advances

from the language emergence community. In the realm of natural language, we also note

works on evaluating systematicity [Lake and Baroni, 2018a, Ruis et al., 2020]. Loula et al.

[2018] demonstrated that recurrent neural networks could systematically learn to recombine

functional words in novel contexts where they receive a large number of instances on the

pattern to generalize during training. Finally, closer to our work, Dessì et al. [2021] propose

to use a sender-receiver setup with discretized a bottleneck at the output of the sender, as

done in Ren et al. [2020b].

3.3. Soft-discretization bottleneck

Contrastive learning objectives can generally be decomposed as inducing a pressure for

alignment (expressivity) as well as a pressure for uniformity (compressibility) [Wang and

Isola, 2020]. Models implementing contrastive learning objectives generally implement a

mixture of explicit and implicit pressures toward expressivity and compressibility. For ex-

ample, the Noise Contrastive Estimation objective used in many models [Chen et al., 2020a,

Hjelm et al., 2019b] induces both a pressure to compress the variability coming from the

augmentations as well as a pressure for preventing the samples from learning a degenerate

solution. BYOL [Grill et al., 2020] induces the expressive pressure implicitly through re-

normalization and the use of a target network that is updated through a moving average

of an online network. More generally, all those methods also have compressive pressure

coming from the architectural choices. In general, the compressive pressure induces the

structure [Kirby et al., 2015] that is important, we argue, for the generalization that we

observe.
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Encoder
...

Concat

Soft-
discretization

...

Fig. 1. Proposed Soft-Discretization Bottleneck. σ represents the Softmax operation and s
is an linear layer followed by a representation into a L× V matrix.

Discretization is an efficient way to induce a compressive constraint as the network as a

limited bandwidth to encode the data. [Liu et al., 2021] demonstrated that discretization via

Vector Quantization improves systematic out-of-distribution generalization on several tasks.

However, hard discretization methods such as Vector Quantization [Oord et al., 2018] and

REINFORCE [Williams, 1992] generally necessitate the use of straight-through estimation,

which typically leads to a harder optimization problem. While hard-discretization has several

use-cases, we demonstrate that the generalization benefits can be achieved with a soft variant

that permits a smoother optimization.

We illustrate our proposed soft-discretization module in Figure 1. It embeds a represen-

tation into a L × V representation via an embedding module, denoted s. A temperature

parameter then scales the logits before re-normalizing via a softmax operation. Concretely,

the logits are re-normalized as follows for i = {1, . . . , V }:

p̄
(k)
i := ez

(k)
i /τ∑V

j=1 e
z

(k)
j /τ

, (3.3.1)

for all k ∈ {1, . . . ,L} and τ a temperature parameter.

The soft-discretized bottleneck can be integrated easily in a noise-contrastive estimation

model [Hjelm et al., 2019b, Chen et al., 2020a] or BYOL [Grill et al., 2020]. We add it
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Fig. 2. Systematic splits used by this work with the number of K associated attributes
in each split. (a) Shapes3d and (b) MPI3D: Each shape is associated with K colors in
Shapes3d and MPI3D. (c) dSprites: Each shape is associated with K quadrant in dSprites.

after the encoder and before the projector in our experiments. The L soft features are

concatenated into a vector p̄ that is injected into the projector module, which is defined as

a Linear layer or a small MLP. Given that small modification, the contrastive objectives are

left unchanged.

3.4. Systematic splits

Systematicity, as introduced in the context of understanding the mechanism which en-

ables language and thought [Fodor and Pylyshyn, 1988] in cognitive sciences and the philos-

ophy of the mind, is understood as follows: The ability to understand some natural language

sentences is intrinsically connected to the ability to understand certain others. For example,

an agent who exhibits systematicity and can understand the concepts of a green triangle and

a blue square can understand the concepts of a blue triangle and a green square.

We adapt this definition of systematicity to the task of classification and propose that a

model exhibits systematicity if, whenever it recognizes the attributes π1 of a sample x1 and
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the attributes π2 of a sample x2 then it can recognize the attributes π′ of a sample x′ where

the attributes π′ is a combinations of attributes in π1 and π2.

Concretely, our definition of systematic splits requires that we have access to the at-

tributes {π1, π2, . . . , πn} of the samples x in a dataset. Assume that each attribute πi has a

set of possible discrete values. Then, we generate a split by associating the value of certain

attributes πi with the value of certain other attributes πj, j 6= i, ensuring that all the possible

values in πi for all i are marginally present in each subset. For example, we associate each

shape with K different colours in Figure 2a and Figure 2b, while ensuring that each shape

and each colour are marginally present in all datasets. In Figure 2c, we associate each shape

with K different positional quadrant. All the shapes and possible positions in X and Y are

marginally present in the train, valid, and test splits.

While this scheme allows us to study the robustness of models to systematic shifts, it also

allows us to control for the strength of the association between two attributes. On one end of

the spectrum, an attribute is strongly associated with another attribute if each of its values is

associated with one value of the other attribute. This correspond to K = 1 in our examples

in Figure 2. On the other end of the spectrum, an attribute is weakly associated with another

attribute if each of its values is associated with all the possible values of another attribute.

This corresponds to where two sets are sampled independently from the same distribution.

3.5. Experiments

We conduct our investigation on in distribution generalization as well as two out-of-

distribution generalization categories: systematic out-of-distribution generalization as de-

scribed in Section 3.4 and generalization to distribution shifts. The comparative experiments

on the set of systematic generalization datasets are conducted on the BYOL [Grill et al.,
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2020] model, the SimCLR model [Chen et al., 2020a] and the SwaV model [Caron et al.,

2020] to demonstrate that the proposed module is not contrived to one setup.

The systematic out-of-distribution generalization experiments are performed on a set of

three datasets with various systematic splits that we illustrate in Figure 2. We associate two

generative factors: shape and colour, for MPI3D [Gondal et al., 2019] and Shapes3D [Burgess

and Kim, 2018]. We consider four different splits on MPI3D, ranging from associating one

colour with one shape to associating four colours with four shapes. We defined three splits

for Shapes3D where we associate each colour with three, six and eight colours. We associate

three attributes for dSprites: X position, Y position and shape. The two splits are defined

as each shape associated with one or two quadrants. We control for the number of training

samples in all the datasets such that the number of training samples in all Ks are the same.

That way, a difference in performance between two K is not caused by having more training

samples. For Shapes3D, we fixed the wall colour, and the floor colour attributes to a constant

value because we observed that not controlling for that variable made the problem of out-

of-distribution detection too easy and thus meaningless. We hypothesis that this is due to a

transfer of knowledge between the colour attributes between the shape, wall and floor, and

thus indicating that these factors are not entirely independent. We leave that exploration

for future work.

The distribution shifts experiments are conducted on a set of different distribution shifts

on ImageNet. We consider robustness to a set of common image corruptions via Cifar100-

C and ImageNet-C [Hendrycks and Dietterich, 2018], natural adversarial examples vias

ImageNet-A [Hendrycks et al., 2021b], a set of different rendering of ImageNet’s classes

via ImageNet-R [Hendrycks et al., 2021a], and a distinct in-distribution set, collected using

the same method as the original test set, via ImageNet-v2 [Recht et al., 2019].
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Fig. 3. In-distribution (Top) and out-of-distribution (Bottom) accuracy on classifying
the shape attribute on MPI3D (Left), dSprites (Middle) and Shapes3D (Right) for K
associated attributes. K colors for MPI3D and Shapes3D and K positional quadrant for
dSprites.

3.5.1. Systematic out-of-distribution generalization

We conduct the systematic out-of-distribution generalization experiments with a simple

Convolutional network that we train with ADAM [Kingma and Ba, 2017] and a batch size

of 256. For each methods, we perform a hyper-parameters search and pick the best set of

parameters according to the systematic validation split for a single K number of associated

attributes (see Figure 2). This set of hyper-parameters is used to train every models on every

K’s number of associated attributes for five seeds. The evaluation is performed by training

a linear model with Ridge Regression for each attribute using the training data. This linear

model is used to compute the accuracy on in-distribution and out-of-distribution validation

and test sets.

Comparative study. We first present a comparative study across all the subsets presented

in this work. We compare the in-distribution and out-of-distribution performance on the
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shape attribute for the three datasets in Figure 3 and observe a clear pattern. The soft-

discretization bottleneck improves the accuracy compared to their baseline for all the meth-

ods tested in both in-distribution and out-of-distribution.

Ablation study. We present an ablation study of the module to isolate the factors leading

to improved performance. We perform the experiments on the MPI3D dataset with K = 3

and present the results in Table 1. We tested the idea of inducing additive and multiplicative

noise and noise via dropout to test the hypothesis that a noisy channel might improve the

test accuracy. We notice that the noisy channel does not induce improvement in perfor-

mance in all those cases. Finally, we explore the idea of inducing hard discretization during

training and notice that such a procedure substantially reduces performance. The reduction

in performance could be due to instability during training, which further motivates the idea

of using soft-discretization to induce sparsity.

BYOL + noise Argmax Softmax VQ Test accuracy
X 0.29± 0.01
X X 0.28± 0.01
X X 0.52± 0.03
X X X 0.49± 0.04
X X X 0.32± 0.03
X X 0.39

Table 1. Ablation of SSL-SB on MPI3D-K:3. We test the effect of adding noise, a hard
discretization bottleneck via Gumbel-Softmax straight-through estimation and Vector Quan-
tization and the soft discretization bottleneck.

Effect or the message/vocabulary size. We investigate the effect of varying V and

L, the vocabulary size and the message size, respectively, on the validation accuracy of

predicting the systematically out-of-distribution colour and shape attributes of MPI3D with

K = 3, in Figure 4a. First, we observe an inverse U-shape curve for the accuracy of the shape

attribute with respect to the size of both the vocabulary and the message. This indicates that
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a bottleneck on the amount of information that the network can pack in the representation

leads to an improvement in the out-of-distribution generalization of this attribute. However,

we do not see the same behaviour for the colour attribute, indicating that the bottleneck

does not lead to better out-of-distribution generalization on this attribute.
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(a) Study of the effect of the vocabulary
size (V) and the message size (L) on MPI3D
for K = 3 on the systematically out-of-
distribution validation set. We fix the V =
40 when interpolating L and L = 80 when
interpolating V . We evaluate the accuracy
on the shape and colour attributes.
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(b) Study of the effect of the temperature
parameter on the online (τO) and the target
(τT ) networks. We fix the temperature τO =
1.5 when interpolating τT and τT = 4.0 when
interpolating τO.

Fig. 4. Study of the component of the proposed SDB.

Effect of the temperature on the online and target networks. We also investigate

the effect of varying the temperature parameters for both the online and the target network

of BYOL on the systematic out-of-distribution generalization on both the colour and the

shape attribute of MPI3D with K = 3. In this setup, we observe an inverse U-curve for

both the shape and the colour attribute when varying the temperature parameter of the

online network, demonstrating that the sparsity induced by the temperature of the online

network affects the out-of-distribution generalization. However, this effect is not observed

when varying the temperature of the target network.
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CIFAR100 CIFAR100-C

BYOL 72.57 30.80
BYOL + SDB 74.27 33.88

Table 2. Test accuracy. Com-
parison of the test accuracy on CI-
FAR100 and CIFAR100-C. A linear
classifier is trained on top of a trained
representation using the CIFAR100
training samples.
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Fig. 5. Fine-grained comparison of the test
accuracy on all of the CIFAR100-C domain
shift.

3.5.2. Generalization to domain shift

As done in previous works [Grill et al., 2020, Chen and He, 2020, Chen et al., 2020a], we

conduct the experiments by training a ResNet-50 [He et al., 2015] using Stochastic Gradient

Descent [Bottou et al., 2018] with a cosine decay scheduler on the learning rate. For the

ImageNet experiments, we use a batch size of 256 and train for 100 epochs. For each models,

we use the other hyper-parameters proposed in their respective paper and tune the hyper-

parameters related to our proposed methods using a validation set of 10 samples per classes.

Using the hyper-parameters of the model that perform the best on the validation set, we re-

train three models with independent random seeds with all the data. The evaluation is done

by training a linear classifier, using the training data, on top of the learned representation

following the procedure done in previous works.

Comparative study on CIFAR-100. We evaluate the effect of the soft-discretization bot-

tleneck on domain generalization. We train a linear classifier on a pre-trained representation

using the in-distribution sample. In Table 2, we present the in-distribution accuracy and

the out-of-distribution test accuracy CIFAR100 and CIFAR100-C, respectively. We observe
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Imagenet Imagenet-v2 Imagenet-r Imagenet-a Imagenet-c
BYOL 67.16 53.96 15.35 0.87 33.32

BYOL + SDB 70.22 57.73 17.95 1.01 37.98
Table 3. Test accuracy. Comparison of the test accuracy on ImageNet and and several
robustness benchmarks. A linear classifier is trained on top of a trained representation using
the ImageNet training samples.

that the bottleneck improves both the in-distribution and out-of-distribution test sets. We

present a fine-grained comparison of the accuracy on all of the domain shifts in Figure 5.

We observe that the bottleneck induces an improvement across all of the domain shifts.

Comparative study on ImageNet. We perform a similar comparative study on ImageNet

using more robustness benchmarks. As demosntrated in Table 3, we observe that the soft-

discretization bottleneck improve the in-distribution generalization as well as the robustness

for every datasets considered.

3.6. Conclusion

We studied the robustness of models trained with contrastive learning on both systematic

out-of-distribution and domain shift. We proposed a drop-in module that that induces soft-

sparsity and observe that this module improve the out-of-distribution generalization setups

that we studied.
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Chapter 4

Conclusion & future works

In this document, we tried to demonstrate how a structured representation of the data can

lead to some applications and how it can improve generalization. In the first project, we

combined a set of known techniques in the machine learning literature to learn a domain

invariant representation of the data. This representation was used in an unsupervised do-

main translation framework to inform the model of the high-level semantics of the data

being transferred and an additional objective to further constraint the optimization to find

a solution that preserves the learned semantics. I believe that this kind of approach can be

applied more generally to other domains of applications. For example, data in healthcare

are notoriously hard to obtain and usually comes from different labs, each of them inducing

a distribution shift due, for example, to the use of a different machine. Therefore, learning

a representation that is invariant to those domain shifts without explicit supervision could

allow practitioners to leverage data from multiple sources.

The language emergence literature heavily inspired the second project presented in this

document. One objective of the community studying language emergence is to understand

the mechanisms that lead to compositional languages. One direction is that compositional



structure in language emerges due to pressures for expressivity and compressivity. Thus,

the motivation of this project is to use some of the ideas developed in the language emer-

gence literature and see if these ideas also lead to more structure in representation learn-

ing frameworks. The starting idea of this project was to understand how to use Iterated

Learning in a contrastive learning framework. While we initially had encouraging results

that Iterated Learning yielded improvement in systematic generalization, we realized that

the soft-discretization bottleneck that we were applying to bias the model toward having

a discrete representation during the learning phase also led to improvement in systematic

generalization. Taking a step back, this makes sense since the soft bottleneck induces a

compressive bottleneck, which has been demonstrated to lead to structure.

I believe that discrete and soft-discrete bottlenecks in self-supervised learning can open

up the opportunity for further improvement in the emergence of structure. We will now

explore some future directions that can be fruitful in that direction.

4.1. Directions for further generalization improvement

in self-supervised learning

Note 1: This section contains some preliminary ideas and directions that I believe can be

fruitful to extend on the work presented in our ongoing work on self-discrete representation for

contrastive learning. Therefore, some propositions are merely speculation backed by intuition,

while others may have some empirical evidence to back them up.

Note 2: Expected timeline: Exploration of this direction: 3 months.

Note 3: Consideration: It might be hard to publish a project without more interesting in-

sights, since these ideas are not novel.
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Iterated learning for contrastive learning. In Section 1.2.1, we have seen an implemen-

tation of Iterated Learning in the case of a symbolic communication game. Furthermore, we

have seen that Iterated Learning leads to the emergence of compositional structure in the

representation generated by the sender. This observation eventually led to the idea presented

in chapter 3.

However, before reaching the proposed method, a move naive approach that we attempted

was to apply some slight modifications to the Neural Iterated Learning procedure presented

in Algorithm 1:

• We define J as a contrastive objective that we minimizes for the encoder,

• The distillation is done by minimizing the cosine similarity between the generated

continuous representation of the online network and the representation of the student

network,

• When J was defined as the BYOL objective, we would update the parameter of the

target network (i.e. the receiver) via a moving average of the parameters of the online

network (i.e. the sender).

This led to a continuous version of the Neural Iterated Learning, where the objective was

defined as a contrastive objective. However, we noticed that Iterated Learning did not yield

improvement over the non-iterated learning, in this case. However, when we induced a hard

discrete bottleneck with straight-through estimation, and the distillation was using a cross-

entropy between the discrete token of the online network and the prediction of the student

network, then Iterated Learning started to yield improvement over the non-iterated learning

counterpart. We present an earlier observation of this result in Figure 1 with a set of three

different augmentation schemes: random crop, resize and gaussian noise. The experiment

was performed on a systematic out-of-distribution of dSprites with K = 2, as described in
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the previous chapter. While some sets of augmentations can lead to an out-of-distribution

accuracy, the iterated learning procedure only improves the performance in the discrete case.

Fig. 1. Comparison on continuous and discrete neural iterated learning using a set on a set
of three augmentation scheme.

Therefore, discreteness seems to play an essential role in the success of iterated learning.

When we compare with comparable iterated learning methods that exist in the literature,

such as Neural Iterated Learning, Noisy Student [Xie et al., 2020] and MILe [Rajeswar et al.,

2021], we notice that they all have a discretization component to them. In that sense, this

soft-discrete bottleneck could yield better generalization, as demonstrated in these works,

but in the context of contrastive learning.

Mixup and cluster assumption for contrastive learning. In Section 1.1.2, we described

how the cluster assumption and local lipschitzness improved the task of domain adaptation

via several regularizers such as VAT and Virtual Mixup. Mixup and the cluster assumption

have also been demonstrated to improve robustness more generally in the context of semi-

supervised and domain generalization [Wang et al., 2021]. However, in order to apply these

methods, we typically need discrete categories. For example, we cannot enforce the general

constraint that the decision boundary has to be in a low-density region if the region is

dense. Mixup has not been demonstrated to work well on dense region as far as we can
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tell. However, contrastive learning methods traditionally learn a dense representation. In

that sense, a soft or hard discretization bottleneck would allow us to use known robustness

methods to improve the robustness of those methods.

For example, we could implement the Virtual Mixup objective as follow. Take two

samples x and x′ with p̄L×V and p̄′L×V their respective soft labels. Define

x̃ := αx+ (1− α)x′,

an interpolated sample with α ∈ [0,1] and its interpolated soft targets

p̃L×V := αp̄L×V + (1− α)p̄′L×V .

Then, we would define the objective as follows

Lmix := −
L∑
i=1

V∑
j=1

p̃>i,j log f(x̃)i,j, (4.1.1)

with f : x 7→ p̄L×V .

4.2. Directions for semantics and structure identifica-

tion in self-supervised learning

Note 1: This section contains some speculative ideas and directions that I find interesting

and could yield novel ideas.

Note 2: Expected timeline: Exploration of this direction: 4 months.

Note 3: Consideration: I don’t have much experience in that direction and I might be over-

estimating the value or under-estimating its complexity. Being able to extract the semantics

in the data could be valuable. For example, if we could extract the underlying seman-

tics controlling for how the DNA is transcribed into RNA, we could probably understand
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more about biology. However, I currently believe that if we want to identify semantics or

draw relationships between samples via the representation of a learned model using known

mathematical tools, then such representation needs to be structured so that the interesting

semantic properties are in relation to each other via very simple rules. I also believe that

such a structure can emerge given the right set of compressive pressure. After my projects

related to language emergence presented in the previous sub-section, understanding how we

can identify learned semantics in the representation of a trained network or in the parameters

of a Neural Network can be interesting.

At the moment, the preliminary exploration I have performed demonstrates that pruning

a trained network via the Lottery Ticket Hypothesis pruning methods unveils the modular

structure of the network. In other words, the "winning" ticket is highly modular. To make

this observation, I considered this measure of modularity typically used in Network Science

and defined it as follows [Clauset et al., 2004]:

Q :=
n∑
c=1

Lc
m
−
(
kc
2m

)2
 ,

where m is the number of edges, c represent each community, and Lc is the number of intra-

connection among the member in a community. A community represents as a group of nodes

that are tightly connected. I computed the modularity of a trained network given its sparsity

and shows that pruning the network unveils a network that is much more modular than its

random counterpart, as demonstrated in Figure 2. Interestingly, the capacity to reduce the

sparsity is related to the emerging structure in the network.

I believe that a similar observation can be made with representation that generalizes bet-

ter. The challenge, however, is coming up with both a procedure for identifying the structure

in the representation and a heuristic for filtering out unnecessary features. Fortunately, soft

82



Fig. 2. Comparison of the Modularity of an iteratively pruned network and a random
network

and hard discretization might answer the second question. One could say that features with

a high entropy capture noise or irrelevant features since higher-order features should rarely

be present. More investigation is needed for answering the first question, but one could try

using tools from Topological Data Analysis to try and draw structure among the features.
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Appendix A

Appendix section 2

A.1. Additional experimental details

Our results on MNIST↔SVHN and Sketches→Reals datasets were obtained using our

Pytorch [Paszke et al., 2019] implementation. We provide the code which contains all the

details necessary for reproducing the results as well as scripts that will themselves reproduce

the results.

Here, we provide additional experimental and technical details on the methods used.

In particular, we present the datasets and the baselines used. We follow with a detailed

background on IMSAT [Hu et al., 2017] which is used to learn a clustering on MNIST in our

MNIST↔SVHN. Next, we give a background on MoCO [Chen et al., 2020c] which is used

to learn a representation on the Reals. Then, we provide a background on Virtual Mixup

Training, which is the domain adaptation technique that we use to adapt either the MNIST

to SVHN or Reals to Sketches. Finally, we provide a method for evaluating the clusters

across multiple domains.



A.1.1. Experimental datasets

Throughout our SPUDT experiments, we transfer between both the MNIST [LeCun

and Cortes, 2010], which we upsample to 32× 32 and triple the number of channels, and the

SVHN [Netzer et al., 2011] datasets. We don’t alter the SVHN dataset, i.e. we consider 32×

32 samples with 3 channels RGB without any data augmentation. But, we consider samples

with feature values in the range [-1, 1], as it is usually done in the GAN litterature [Radford

et al., 2015], for all of our datasets.

We use a subset of Sketches and Reals from the DomainNet dataset [Peng et al.,

2019] to demonstrate the task of SHDT. We use the following five categories of the Do-

mainNet dataset: bird, dog, flower, speedboat and tiger ; these 5 are among the categories

with most samples in both our domains and possessing distinct styles which are largely

non-interchangeable. We resized every image to 256× 256.

A.1.2. Baselines

For our UDT baselines, we compare with CycleGAN [Zhu et al., 2017b], MUNIT [Huang

et al., 2018], DRIT [Lee et al., 2019] and StarGAN-V2 [Choi et al., 2019]. We use these

baselines because they are, to our knowledge, the reference models for unsupervised domain

translation today. But, none of these baselines use semantics. Also, we are not aware of any

UDT method that proposes to use semantics without supervision. Hence, we also consider

EGST-IT [Ma et al., 2019] as a baseline although it is weakly supervised by the usage of a

pre-trained VGG network. EGSC-It proposes to include the semantics into the translation

network by conditioning the content representation. It also considers the usage of exemplar,

unconditionally of the source sample.
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MUNIT DRIT EGSC-IT StarGAN-v2 CatS-UDT (ours)

M
→

S
S→

M

Fig. 1. Qualitative comparison of the baselines with our method on MNIST↔SVHN. Even
columns correspond to source samples, and odd columns correspond to their translations.

For each of the baselines, we perform our due diligence to find the set of parameters that

perform the best and report our results using these parameters.

A.2. Additional results

A.2.1. Qualitative results for MNIST-SVHN

We present additional qualitative results to provide a better sense of the results that our

method achieves. In Figure 1, we show qualitative comparisons with samples of translation

for the baselines and our technique. We observe that the use of semantics in the translation

visibly helps with preserving the semantic of the source samples. The qualitative results

confirm the quantitative results on the preservation of the digit identity presented in Table 1.

Furthermore, in Figure 2, we present qualitative results of the effect of changing the noise

sample z on the generation of SVHN samples for the same MNIST source sample. The first

row represents the source samples and each column represents a generation with a different

z. Each source sample uses the same set of z in the same order. We observe that z indeed

grossly controls the style of the generation. Also, we observe that the generations preserve

features of the source sample such as the pose. However, we note that some attributes such

as typography are not perfectly preserved. In this instance, we conjecture that this is due
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to the fact the the “MNIST typography" is not the same as the “SVHN typography". For

example, the ‘4’s are different in the MNIST and SVHN datasets. Therefore, due to the

adversarial loss, the translation has to modify the typography of MNIST.

Fig. 2. Multiple sampling for MNIST→SVHN. For each column, the first row is the source
sample and each subsequent row is a generation corresponding to a different z.
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Fig. 3. Ablation studies on the effect on the FID on MNIST↔SVHN of (a) Setting one
λ = 0 while keeping the other λ′ = 1, (b) Varying λsem and (c) Qualitative results of
SVHN→ MNIST when λsem = 10.
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Fig. 4. Comparative studies on the effect (a) on the translation accuracy and (b, c) on the
FID on MNIST↔SVHN on (a, b) Conditioning the content representation on the semantics,
not conditioning on semantics and conditioning the style representation on the semantics.

A.2.2. Additional ablation studies for MNIST-SVHN

Ablation study – the effect of the losses on the FID. In Figure 3a, we evaluate

the effect of removing each of the losses, by setting their λ = 0, on the FID. We observe that

removing the semantic loss yields the biggest deterioration for the FID. Hence, the semantic

loss does not only improve the semantic preservation as observed in Section 2.4.1, but also

the image quality of the translation.

Also, we see a U-curve on the FID on MNIST→SVHN with respect to the parameter λsem.

We observe that tuning this parameter allows us to improve the generation quality. We make

a similar observation for SVHN→MNIST for both the FID and the accuracy. In Figure 3c,

we present qualitative results of the effect of setting λsem = 10. We see that the samples are

a mix of MNIST and SVHN samples. The reduction in generation quality explains why we

obtain a worst FID when λsem is too high. Moreover, we see that the generated samples are

out-of-distribution, explaining why we obtain a low accuracy although the digit identity is

preserved.
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Comparative study – effect of the method to condition the semantics. In

Figure 4a and in Figure 4b, we evaluate the effect of the method to condition the semantics

– in MNIST↔SVHN – on the translation accuracy and on the FID respectively.

None refers to the case where the semantics is not explicitly used to condition any part of

the translation network, but the semantic loss is still used. This method is commonly used

in supervised domain translation methods such as Bousmalis et al. [2017], Hoffman et al.

[2018], Tomei et al. [2019]. Content refers to the case where categorical semantics are used

to condition the content representation. This method is similar to the method used in Ma

et al. [2019], for example, with the exception that the semantic encoder they used is a VGG

trained on a classification task. Style refers to the case where the categorical semantics are

used to condition the style, as we propose to do.

We see that the method to condition the semantics does not affect the translation ac-

curacy on MNIST↔SVHN. However, it does affect the generation quality. This further

demonstrates the relevance of injecting the categorical semantics by modulating the style of

the generated samples.

Comparative study – effect of adapting the categorical semantics We saw that

an adapted categorical semantics improved the semantics preservation on MNST→SVHN

in Figure 3b. Here, we will finish the comparison of the effect of adapting the semantics

categorical representation on accuracy for SVHN→MNIST and the FID for MNIST↔SVHN

in Figure 4c

A.2.3. Additional results for Sketch→Real

We provide more results to support the results presented in Section 2.4.2 on the

Sketch→Real task.
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Additional quantitative comparisons We observe qualitatively in Table 1 that our

method is lacking in terms of diversity with respect to the other methods that do not leverage

any kind of semantics. This is not surprising because we penalize the network for generating

samples that are unrealistic with respect to the semantics of the source sample.

Effect of setting λsem = 0. We demonstrated that not using the semantic loss consid-

erably degraded the FID, in Table 3a. In Figure 5, we demonstrate qualitatively that the

generated samples, when λsem = 0 suffers from the same problem as the baseline: the style

is not conditional to the semantics of the source sample.

Fig. 5. Sketch→Real using CatS-UDT with λsem = 0. Samples on the first row are the
source samples. Samples on the subsequent rows are generated samples.

Table 1. Additional quantitative comparisons with the baselines. We qualitatively compare
the baselines using all the Sketches→Reals categories using LPIPS (higher is better), NBD
and JSD (lower is better).

Data CycleGAN DRIT EGSC-IT StarGAN-V2 CatS-UDT (ours)
LPIPS 0.713 0.736 0.064 0.672 0.065
NDB 18 16 19 16 12
JSD 0.139 0.025 0.044 0.029 0.033
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Effect of the method to condition the semantics. The method of conditioning

the semantics in the network affects the generation, as observed in Table 3b. We present

qualitative results in Figure 6 demonstrating the effect of not conditioning the semantics

into any part of the translation network – while still using the semantic loss – and the effect

of conditioning the style on the content representation. In the latter case, we consider the

semantics as categorical labels adapted to the sketches and the reals as well as semantics

defined as the representation from a VGG network trained on classifying ImageNet.

In the first case, the network fails to generate diverse samples and essentially ignores

the style input. We conjecture that this happens due to two reasons: (1) The content

network and the generator cannot extract the semantics of the source image due to its

constraints, relying on the style injected using AdaIN. (2) The mapping network generates

the style unconditionally of the source samples; the style for one semantic category might

not fit for another (e.g. the style of a tiger does not fit in the context of generating a

speedboat). Therefore, to avoid generating, for example, a speedboat with the style of a

tiger, the translation network ignores the mapping network.

In the second case, the network fails to generate samples like real images when using

categorical semantics. We demonstrate such phenomenon in Figure 6b. The failure is similar

to the one observed when the content encoder downsamples the source image beyond a certain

spatial dimension. In both these cases, the generated samples lose the spatial coherence of

the source image. Without the spatial representation, the generator cannot leverage this

information to facilitate the generation. Coupled with the fact that the architecture of the

generator assumes access to such a spatial representation and the low number of samples, this

explains why it fails at generating sensible samples. In this case, the spatial representation

must be lost due to the addition of the categorical semantic representation and the semantic
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loss. We conjecture that by minimizing the semantic loss, the network tries to leverage the

semantic information, interfering with the content representation. Furthermore, we tested

a setup similar to the one presented in EGST-IT [Ma et al., 2019] where the semantics is

defined as the features of a VGG network in Figure 6c. We see that this failure is not present

in this case.

Effect of the spatial dimension of the content representation. We present ex-

amples of samples generated when the spatial dimension of the content representation is too

small to preserve spatial coherence throughout the translation in Figure 7. In this example,

we downsample until we reach a spatial representation of 4 × 4 for both our method and

CycleGAN. We included CycleGAN to demonstrate that this effect is not a consequence of

our method. In both cases, we see that the translation network fails to properly generate

the samples as previously observed and discussed. This further highlights the importance of

the inductive biases in these models.

(a) Not conditioning the
translation network.

(b) Condition the content rep-
resentation with categorical se-
mantics.

(c) Condition the content
representation with VGG
features.

Fig. 6. Qualitative effect of the method to condition the semantics in the translation network
in Sketches→Reals. Samples on the first row are the source samples. Samples on the
subsequent rows are generated samples.
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(a) CatS-UDT. (b) CycleGAN.

Fig. 7. Effect of the representation spatial dimension on the generation of Sketches→Reals.
For (a) and (b), we downsample the content representation to a 4× 4 feature map. Samples
on the first row are the source samples. Samples on the subsequent rows are generated
samples.

Additional generation for each classes. We provide additional generations for each

of the categories considered in Sketches→Reals in Figure 8 for more test source samples. In

the fourth column of the dog panel in Figure 8b and the third column of the tiger panel

in Figure 8e, we see a failure case of our method which can happen when a sketch gets

mis-clustered. In the first case, the semantic network miscategorizes the dog for a tiger.

In the second case, the semantic network miscategorizes the tiger for a dog. This further

demonstrates the importance of a semantics network that categorizes the samples with high

accuracy for the source and the target domain.

114



(a) Birds. (b) Dogs.

(c) Flowers. (d) Speedboats.

(e) Tigers.

Fig. 8. Additional Sketches→Reals generations for each semantic categories.115


	Résumé
	Abstract
	Contents
	List of tables
	List of figures
	Remerciements
	Introduction
	Chapter 1. Structure in representation learning and artificial language
	1.1. Representation learning
	1.1.1. Architecture – Convolutional Neural Networks
	1.1.2. Objectives

	1.2. Emergence of structure in artificial languages
	1.2.1. Communication games


	Chapter 2. Integrating Categorical Semantics into Unsupervised Domain Translation
	2.1. Introduction
	2.2. Related works
	2.3. Categorical Semantics Unsupervised Domain translation
	2.3.1. Unsupervised learning of domain invariant categorical semantics
	2.3.2. Conditioning the style encoder of Unsupervised Domain Translation
	2.3.2.1. Networks and their functions
	2.3.2.2. Training


	2.4. Experiments
	2.4.1. SPUDT with MNISTSVHN
	2.4.2. SHDT with SketchesReals

	2.5. Conclusion and discussion

	Chapter 3. Soft-discretization for self-supervised learning
	3.1. Introduction
	3.2. Background
	3.2.1. Systematic generalization

	3.3. Soft-discretization bottleneck
	3.4. Systematic splits
	3.5. Experiments
	3.5.1. Systematic out-of-distribution generalization
	3.5.2. Generalization to domain shift

	3.6. Conclusion

	Chapter 4. Conclusion & future works
	4.1. Directions for further generalization improvement in self-supervised learning
	4.2. Directions for semantics and structure identification in self-supervised learning

	References
	Appendix A. Appendix section 2
	A.1. Additional experimental details
	A.1.1. Experimental datasets
	A.1.2. Baselines

	A.2. Additional results
	A.2.1. Qualitative results for MNIST-SVHN
	A.2.2. Additional ablation studies for MNIST-SVHN
	A.2.3. Additional results for SketchReal



