Emergent structure in Representation Learning Application & Generalization

Samuel Lavoie

All the impressive achievements of deep learning amount to just curve fitting.

Judea pearl — https://www.quantamagazine.org/to-build-truly-intelligent-machines-teach-them-cause-and-effect-20180515/

Emergent property

Property P of a system S with microdynamics D is emergent iff P can be derived from D and the external conditions of S.

Mark bedau. Week Emergence* 1997

Example of emergent property

Chris Ollah et al. An Introduction to Circuits. 2020

Curve detector

Example of emergent property

Unsupervised Domain Translation

Jun-Yan Zhu et al. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. 2017

Properties of Unsupervised Domain Translation

- Preserve pose.
- Transfer textural properties.
- Requires very few samples. about 1000 for horse-zebra.

Shortcoming of Unsupervised Domain Translation

Does not preserve high-order attributes.

 $\mathsf{MNIST}\to\mathsf{SVHN}$

 $\mathsf{SVHN} \to \mathsf{MNIST}$

Shortcoming of Unsupervised Domain Translation

Inconsistent style generation.

Sketch \rightarrow Reals

Integrating Categorical Semantics into Unsupervised Domain Translation

In collaboration with Faruk Ahmed and Aaron Courville

Potential approaches

Supervised

Objectives leveraging labels

Objectives leveraging pairing

Objectives leveraging pre-trained representation

Unsupervised

Inductive bias via the architecture

Unsupervised objectives

Objective leveraging pre-trained representation without supervision

Potential approaches

Supervised

Objectives leveraging labels

Objectives leveraging pairing

Objectives leveraging pre-trained representation

Unsupervised

Inductive bias via the architecture

Unsupervised objectives

Objective leveraging pre-trained representation without supervision

Learning domain invariant representation without supervision

Representation learning

Clustering

Unsupervised Domain adaptation

Tongzhou Wang and Phillip Isola. Understanding Contrastive Representation through Alignment and Uniformity on the Hypersphere. 2020

Representation learning — Self-supervised learning

Uniformity: Preserve maximal information

Tongzhou Wang and Phillip Isola. Understanding Contrastive Representation through Alignment and Uniformity on the Hypersphere. 2020

Representation learning — Self-supervised learning

Noise contrastive estimation

$$\mathcal{L}_{\text{nce}} := -\log \frac{\exp(d(f(x), f(y)))}{\sum_{\bar{x} \in \mathcal{X} \setminus x} \exp(d(f(x), f(y)))}$$

Samples cluster in dense region

Samples from different domain do not intersect

Embedding of 5 categories: bird, dog, flower, boat, tiger

Samples cluster in dense region

Samples from different domain do not intersect

Embedding of 5 categories: bird, dog, flower, boat, tiger

Samples cluster in dense region

Samples from different domain do not intersect

Embedding of 5 categories: bird, dog, flower, boat, tiger

Samples cluster in dense region

Samples from different domain do not intersect

Define the clusters as pseudo-labels Unsupervised Domain Adaptation

Embedding of 5 categories: bird, dog, flower, boat, tiger

Define the clusters as pseudo-labels and adapt them to the sketches using

Integrate the learned semantics into Unsupervised Domain Translation

Condition style generation

Integrate the learned semantics into Unsupervised Domain Translation

Condition style generation

Constraint mapping to preserve semantics

 $\mathcal{L} := -\sum h(x_0)_i \log(h(\hat{x}_1))_i$

Results MNIST + SVHN

MNIST→SVHN using our method

Sources	7	2	/	0	4	1	Ч	٩	5	9
Style 1	7	2		Ö	4			19	6	9
Style 2	7:	23	18	10	43	1:	+	19	5	19
Style 3	75	2	1	0	43	10	4	19	5	,9
Style 4	76	24	16	01	43	15	-	9	61	94
Style 5	76	2		0	43		43	9	5	9

MNIST→SVHN using our method

Table 1: Comparison with the baselines. Domain translation accuracy and FID obtained on MNIST $(M) \leftrightarrow$ SVHN (S) for the different methods considered. The last column is the test classification accuracy of the classifier used to compute the metric. *: Using weak supervision.

	Data	CycleGAN	MUNIT	DRIT	Stargan-V2	EGSC-IT*	CatS-UDT	Target
Acc	$\substack{M \to S \\ S \to M}$	10.89 11.27	10.44 10.12	13.11 9.54	28.26 11.58	47.72 16.92	95.63 76.49	98.0 99.6
FID	$\substack{M \to S \\ S \to M}$	46.3 24.8	55.15 30.34	127.87 20.98	66.54 26.27	72.43 19.45	39.72 6.60	-

Sources	7	2	/	0	4	1	Ч	٩	5	9
Style 1	7	2		Ö	4			19	6	9
Style 2	7:	23	18	10	43	1:	+	19	5	19
Style 3	75	2	1	0	43	10	4	19	5	,9
Style 4	76	24	16	01	43	15	-	9	61	94
Style 5	76	2		0	43		43	9	5	9

MNIST→SVHN using our method

Table 1: Comparison with the baselines. Domain translation accuracy and FID obtained on MNIST $(M) \leftrightarrow$ SVHN (S) for the different methods considered. The last column is the test classification accuracy of the classifier used to compute the metric. *: Using weak supervision.

	Data	CycleGAN	MUNIT	DRIT	Stargan-V2	EGSC-IT*	CatS-UDT	Target
Acc	$\substack{M \to S \\ S \to M}$	10.89 11.27	10.44 10.12	13.11 9.54	28.26 11.58	47.72 16.92	95.63 76.49	98.0 99.6
FID	$\substack{M \to S \\ S \to M}$	46.3 24.8	55.15 30.34	127.87 20.98	66.54 26.27	72.43 19.45	39.72 6.60	-

Results Sketches→Reals

DRIT

EGST-IT

StarGAN-V2

CatS-UDT (ours)

Emergence of structure in artificial language

Compositionality

The meaning of a complex expression is determined by the meanings of its constituent expressions and the rules used to combine them.

Systematicity

The capacity to understand a complex expression implies the capacity to understand structurally related expressions.

Language as the solution to a coordination problem

David Lewis. Convention. 1968.

Language as the solution to a coordination problem

David Lewis. Convention. 1968.

Vervet monkeys have a idiosyncratic call depending on the predator

Cultural transmission

Simon Kirby, Tom Griffiths and Kenny Smith. Iterated Learning and the evolution of language. 2014

Soft-discretization bottleneck for self-supervised learning

In collaboration with Christos Tsirigotis, Max Schwarzer, Ankit Vani and Aaron Courville.

Continuous vs Discrete representation

Soft-discretization bottleneck

Systematic generalization

Shapes3d

dSprites

MPI3D

Systematic generalization

Shapes3d

dSprites

MPI3D

Table 1. Ablation of SSL-SB on MPI3D-K:3. We test the effect of adding noise, a hard discretization bottleneck via Gumbel-Softmax straight-through estimation and Vector Quantization and the soft discretization bottleneck.

oftmax	VQ	Test accuracy
		0.29 ± 0.01
		0.28 ± 0.01
\checkmark		0.52 ± 0.03
\checkmark		0.49 ± 0.04
		0.32 ± 0.03
	\checkmark	0.39

 τ_O .

Figure 6. Study of the effect of the temperature parameter on the online (τ_O) and the target (τ_T) networks. We fix the temperature $\tau_O = 1.5$ when interpolating τ_T and $\tau_T = 4.0$ when interpolating

Robustness to distribution shift

Train dataset

Test datasets

ImageNet-C

ImageNet

Dan Hendricks, Thomas Dietterich. Benchmarking Neural Networks Robustness to Common Corruptions and Perturbations. 2019. Dan Hendricks et al. Natural Adversarial Examples. 2021. Dan Hendricks et al. The Many Faces of Robustness. 2019. Benjamin Recth et al. Do ImageNet Classifiers Generalize to ImageNet? 2019.

ImageNet-A

ImageNet-R

ImageNet-V2

Results – Robustness

	Imagenet	Imagenet-v2	Imagenet-r	Imagenet-a	Imagenet-c
BYOL	67.16	53.96	15.35	0.87	33.32
BYOL + SDB	70.22	57.73	17.95	1.01	37.98

Future works

Future works

Exploration Iterated learning for SSL.

Exploration

Structure identification in representations.

Iterated learning for communication games

Interaction: Object selection game

Generation

 $\mathcal{Z} := \{(oldsymbol{x}_i, oldsymbol{z}_i)\}_{i=1}^N$

Distillation

$$\min_{\theta^{t+1}} E_{(\boldsymbol{x},\boldsymbol{z})\sim\mathcal{Z}} l(f_{\theta^{t+1}}(\boldsymbol{x}),\boldsymbol{z})$$

* l is defined as the cross-entropy

Yi Ren et al. Compositional language emerges in a Neural Iterated Learning Model. 2020.

Algorithm 1 Neural Iterated Learning **Require:** $\mathcal{X}, f_{\theta^0}, g_{\phi^0}, N_{\text{iter}}, M_{\text{interaction}}$. θ^0 randomly initialized ϕ^0 randomly initialized $t \leftarrow 0$ while $N_{\text{iter}} \neq 0$ do $S \leftarrow 0$ while $S \neq M$ do $\begin{aligned} \theta^t &\leftarrow \theta^t + \alpha \nabla_{\theta^t} J \\ \psi^t &\leftarrow \psi^t + \alpha \nabla_{\psi^t} J \end{aligned}$ Interaction $S \leftarrow S + 1$ end while $\mathcal{Z} \leftarrow \text{Generation}(\mathcal{X}, f_{\theta^t})$ $\theta^{t+1} \leftarrow \text{Distillation}(\mathcal{Z}, f_{\theta^{t+1}})$ ψ^{t+1} randomly initialized $t \leftarrow t + 1$ $N_{\text{iter}} \leftarrow N_{\text{iter}} - 1$ end while

Iterated learning for self-supervised learning

Interaction: Self-supervised learning objective

Example: Noise contrastive estimation, BYOL

Generation

$$\mathcal{Z} := \{(oldsymbol{x}_i,oldsymbol{z}_i)\}_{i=1}^N$$

Distillation

 $\min_{\theta^{t+1}} E_{(\boldsymbol{x},\boldsymbol{z})\sim\mathcal{Z}} l(f_{\theta^{t+1}}(\boldsymbol{x}),\boldsymbol{z})$ * *l* is defined as ? Algorithm 1 Neural Iterated Learning

Require: $\mathcal{X}, f_{\theta^0}, g_{\phi^0}, N, M_{\text{interaction}}$. θ^0 randomly initialized ϕ^0 randomly initialized $t \leftarrow 0$ while $N \neq 0$ do $S \leftarrow 0$ while $S \neq M$ do $\begin{array}{l} \theta^t \leftarrow \theta^t + \alpha \nabla_{\theta^t} J - \alpha \nabla_{\phi^t} J \\ \psi^t \leftarrow \psi^t + \alpha \nabla_{\psi^t} J - \alpha \nabla_{\psi^t} J \end{array}$ $S \leftarrow S + 1$ end while $\mathcal{Z} \leftarrow \text{Generation}(\mathcal{X}, f_{\theta^t})$ $\theta^{t+1} \leftarrow \text{Distillation}(\mathcal{Z}, f_{\theta^{t+1}})$ ψ^{t+1} randomly initialized $t \leftarrow t + 1$ $N \leftarrow N - 1$ end while

Iterated learning for self-supervised learning

Comparing continuous and discrete bottleneck on the systematic generalization task of predicting the shape of dSprites for K=2.

Iterated learning for self-supervised learning

Comparing continuous and discrete bottleneck on the systematic generalization task of predicting the shape of dSprites for K=2.

Conclusion

+ colleagues

