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All the impressive achievements of deep 
learning amount to just curve fitting.

Judea pearl — https://www.quantamagazine.org/to-build-truly-intelligent-machines-teach-them-cause-and-effect-20180515/
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Property P of a system S with micro-
dynamics D is emergent iff P can be derived 

from D and the external conditions of S.
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Emergent property

Mark bedau. Week Emergence* 1997



Example of emergent property

Curve detector

Chris Ollah et al. An Introduction to Circuits. 2020
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Example of emergent property

Jun-Yan Zhu et al. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. 2017

Unsupervised Domain Translation



Properties of Unsupervised Domain Translation

• Preserve pose.


• Transfer textural properties.


• Requires very few samples. 
about 1000 for horse-zebra.
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Shortcoming of Unsupervised Domain Translation

Does not preserve high-order attributes.
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MNIST  SVHN→ SVHN  MNIST→
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Shortcoming of Unsupervised Domain Translation

Inconsistent style generation.
Sketch  Reals→

Sources

Targets



Integrating Categorical Semantics 
into Unsupervised Domain 
Translation
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In collaboration with Faruk Ahmed and Aaron Courville



Potential approaches
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Supervised Unsupervised

Objectives leveraging labels


Objectives leveraging pairing


Objectives leveraging pre-trained representation

Inductive bias via the architecture


Unsupervised objectives


Objective leveraging pre-trained representation without supervision
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Objective leveraging pre-trained representation without supervision




Learning domain invariant representation without supervision
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Domain 1

Domain 2

Representation learning Clustering Unsupervised 
Domain adaptation



Representation learning — Self-supervised learning
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Tongzhou Wang and Phillip Isola. Understanding Contrastive Representation through Alignment and Uniformity on the Hypersphere. 2020



Representation learning — Self-supervised learning
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Tongzhou Wang and Phillip Isola. Understanding Contrastive Representation through Alignment and Uniformity on the Hypersphere. 2020

Noise contrastive estimation

−log
exp(d( f(x), f(y))/τ)

∑x̄∈𝒳∖x exp(d( f(x), f(x̄))/τ)



Property of a model learned with contrastive learning
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Samples cluster in dense region

Samples from different domain do not intersect

Embedding of 5 categories: bird, dog, flower, boat, tiger
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Property of a model learned with contrastive learning
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Embedding of 5 categories: bird, dog, flower, boat, tiger

Samples cluster in dense region

Samples from different domain do not intersect

Define the clusters as pseudo-labels and adapt them to the sketches using


Unsupervised Domain Adaptation



Integrate the learned semantics into Unsupervised Domain Translation
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Integrate the learned semantics into Unsupervised Domain Translation
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Condition style generation Constraint mapping to preserve 
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ℒ := − ∑
i

h(x0)ilog(h( ̂x1))i



Results MNIST SVHN↔
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MNIST SVHN using our method→
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Results MNIST SVHN↔
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Sources
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Style 2

Style 3

Style 4

Style 5

MNIST SVHN using our method→

Ablating losses



Results Sketches Reals→
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DRIT EGST-IT StarGAN-V2 CatS-UDT (ours)



Emergence of structure in 
artificial language
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Compositionality
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The meaning of a complex expression is 
determined by the meanings of its constituent 

expressions and the rules used to combine them.

Red   + =



Systematicity
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The capacity to understand a complex 
expression implies the capacity to 

understand structurally related expressions.

and → andUnderstanding Understanding



Language as the solution to a coordination problem

28David Lewis. Convention. 1968.



Language as the solution to a coordination problem
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Vervet monkeys have a idiosyncratic call depending on the predator

Leopard

Loud barking

Eagle

Short double syllable cough

Snake

Shutter

Predator

Alarm

David Lewis. Convention. 1968.



Cultural transmission
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Simon Kirby, Tom Griffiths and Kenny Smith. Iterated Learning and the evolution of language. 2014



Soft-discretization bottleneck for 
self-supervised learning
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In collaboration with Christos Tsirigotis, Max Schwarzer, Ankit Vani and Aaron Courville.



Continuous vs Discrete representation
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Sample 1

Sample 2

Sample 3

Sample N

…

0

1

0.214

0.4668

0.512

0.74

1

2



Soft-discretization bottleneck
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Encoder
...

Concat

Soft-
discreti]ation

...
στ(z( j))i :=

ez( j)
i /τ

∑V
k=0 ez( j)

k /τ
.

z(i) ∈ ℝV .



Systematic generalization
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Shapes3d dSprites

MPI3D



Systematic generalization
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Shapes3d dSprites

MPI3D



Results — Systematic generalization
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K



Results — Systematic generalization
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Results — Systematic generalization
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Baseline

Soft-Discrete
Hard-Discrete



Results — Systematic generalization
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BYOL-SD on MPI3D-K:3



Robustness to distribution shift
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Dan Hendricks, Thomas Dietterich. Benchmarking Neural Networks Robustness to Common Corruptions and Perturbations. 2019.

Dan Hendricks et al. Natural Adversarial Examples. 2021.

Dan Hendricks et al. The Many Faces of Robustness. 2019.

Benjamin Recth et al. Do ImageNet Classifiers Generalize to ImageNet? 2019.

Train dataset Test datasets

ImageNet-AImageNet-CImageNet ImageNet-R ImageNet-V2



Results — Robustness
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Future works
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Future works
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Wrap-up

Article on Soft-Discretization.


(1 month)

Exploration

Iterated learning for SSL.

Exploration

Structure identification


in representations.



Iterated learning for communication games
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Yi Ren et al. Compositional language emerges in a Neural Iterated Learning Model. 2020.

Interaction: Object selection game

Generation Distillation

z z1 z2

} Interaction

*  is defined as the cross-entropyl



Iterated learning for self-supervised learning
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−α∇ϕt J
−α∇ψ t J

Interaction: Self-supervised learning objective
Example: Noise contrastive estimation, BYOL

Generation

Distillation

*  is defined as ?l



Iterated learning for self-supervised learning
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Comparing continuous and discrete bottleneck on the systematic generalization task of 
predicting the shape of dSprites for K=2.



Iterated learning for self-supervised learning
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Comparing continuous and discrete bottleneck on the systematic generalization task of 
predicting the shape of dSprites for K=2.



Conclusion
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+ colleagues


